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Main objects
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A := {L0, · · · , Ln} a line arrangement in CP2.

E(A) := CP2 −
◦
T (A) the exterior of A.

M(A) := ∂(E(A)) the boundary of E(A), also call the boundary manifold.
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Hironaka's work

Hironaka's theorem

The kernel of the application i∗ is generated by the cycles {ei}.
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π1(M(A)) is generated by the meridians {xi} around the lines Li , and the cycles
{ei} of the squeleton A ∩R2.

The inclusion i of M(A) in E(A) induce an application between the fundamental
groups :

i∗ : π1(M(A)) −→ π1(E(A)).
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Our contributions

Generalization of the Hironaka's result

The cycles are not contractible in E(A), but they retract on the product of the
meridans around the lines passing through the cycles.
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Some de�nitions
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Let {P1, · · · ,Pk} the singular points of A,

p : CP2 −→ CP the canonical projection,

Qi = p(Pi ),

Let γ a path of CP such that : ∀i , ∃t ∈ [0, 1], γ(t) = Qi .
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Wiring diagram

de�nition

The wiring diagram Wγ,A is de�ned by :

Wγ,A := p
−1(γ) ∩ A.

0
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3
4
5
6
7
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It is represent by a diagram like :
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Fundamental group of the boundary manifold

Theorem

The fundamental group π1(M(A), b) admits the following presentation :

One set of generators {xi |Li ∈ A− L0}, that represent the loops around
the lines.

One set of generators {ei,j}, indexed by the loops of the wiring diagram.

For each singular point Pi , a set of relations given by the cyclic
commutator Ri := [lj1xj1 l

−1
j1
, · · · , ljmxjm l−1jm

], where Lj1 , · · · , Ljm are the
lines that pass through Pi , and ljs is ei,js if ei,js is in the previous set, and
trivial otherwise.
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We know that the boundary manifold is a graph manifold and only depend on
the combinatoric of A. So his fundamental group is also combinatoric :

Futhermore, the combinatoric is include in the wiring diagram Wγ,A.
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Cycles in the wiring diagram
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A basis of loop of the wiring diagram is :

{e2,6, e2,7, e1,4, e1,6, e4,6, e3,7}
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Uncrossing word

de�nition

For any cycle ε in M(A), we de�ne the uncrossing word δε as a product of the
xi , such that δεε is the geometric cycles.
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The generators of π1(M(A)) are not exactly the cycles of Wγ,A. So we need to
deinterlace the ei,j for obtain the geometric cycles.

An algorithm to compute the uncrossing word is given in the article of E.
Hironaka.
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Upper word

Upper segments

Let γ be a cycle of WA (view as a CW-complex), a segment s of WA intersect
uppermost γ if there exists a segment s′ include in γ such that s and s′ form a
virtual crossing of WA with s upper s′. The set of all the upper segment of γ is
noted Sγ .

Upper word

For any cycle γ in WA, we de�ne the upper word σγ by :

σγ =
∏
s∈Sγ

a
e(s,γ)
s ,

where e(s, γ) is 1 (resp. -1) if the cross is positive (resp. negative), and as the
Arvola's word associated to the segment s.
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Main result

Theorem

The fundamental group of E(A) admit the following presentation :

π1(E(A)) =< x1, · · · , xn, ε1, · · · , εk | Ri , εj = δ−1εj σεj >
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In the case of complexi�ed real arrangement, the σεj are trivial, and we obtain E.
Hironaka's result.
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Reformulation of the theorem

0→ S
φ−→ π1(M(A)) i∗−→ π1(E(A))→ 0,
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Let A be a complex line arrangement, M(A) be the boundary manifold, and S ,
the normal sub-group of π1(M(A)) generate by the{
δεεσ

−1
ε | ε cycle of Wγ,A

}
. Then we have the following short exact sequence.

where i∗ is induced by the inclusion of M(A) in E(A).
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Relations between two syzygys
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>
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•

•

•
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The End

Thank you for your attention.
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