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IntroductionIntroduction

Let A = {L0, · · · , Ln} be a line arrangement in P2 := CP2. There are two important topological objects associated to A : the pair (P2,
⋃
A) and the

complement P2 \
⋃
A. Let N(A) be a closed regular neigbourhood of A ; the exterior E(A) of A is the closure P2 \ N(A). The boundary manifold

M(A) of A is the common boundary of E(A) and N(A).

The starting point is E. Hironaka’s article [Hir97], where she studies the relation between the homotopy type of a real arrangement exterior and the boundary

manifold. From this relation she deduces a relation between the fundamental groups of this two spaces. We extend the result to the complex arrangement.
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Combinatorics and wiring diagramCombinatorics and wiring diagram

Let P = {P1, · · · , Pk} be the set of the singular points of A, p : C2 → C be

a generic projection. We note Q = {Q1, · · · , Qk} the images of the singular

points of A by the projection p.

Consider a path γ : [0, 1] → C with no self-intersection, and such that

Q ⊂ γ([0, 1]).

Definition.The wiring diagram associated to the path γ is the subset of

[0, 1]× C defined by :

WA,γ =
{

(t, p−1(γ(t)) ∩ A) | t ∈ [0, 1]
}

For example, the wiring diagram of the positive MacLane arrangement is :

8
7
6
5
4
3
2
1

The incidence graph is a subgraph of the Hasse diagram of the arrangement,

in which we only keep the vertices of rank 1 and 0. It contain all the combi-

natorics informations of the arrangement.

Definition. Let A be a line arrangement in CP2, and Γ(A) be the non-

oriented bipartite graph defined by :

Point− vertices : vP , P ∈ P
Line− vertices : vL, L ∈ A.

The edges of Γ(A) are of the form Y (L, P ), with P ∈ P, L ∈ A and

P ∈ L.

The Figure below gives the incidence

graph of the positive MacLane ar-

rangement.
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The boundary manifoldThe boundary manifold

The boundary manifold depends only on the combinatorics of A. The fol-

lowing proposition describes a presentation of π1(M(A)) from the incidence

graph.

Proposition ([BGB12]). The fundamental group π1(M(A)) admits the

following presentation:

•A set of generators {xi | Li ∈ A}, that represent the loops around the

lines.

•A set of generators {ei,j}, indexed by the edges Y (Pi, Lj) that are not

in the maximal tree.

•For each singular point Pi, a set of relations given by the cyclic com-

mutator [lj1
xj1
l−1
j1
, . . . , ljmxjml

−1
jm

] where Lj1
, . . . , Ljm are the lines that pass

through Pi, and ljs is ei,js if Y (Pi, Ljs) is not in the maximal tree, and

trivial otherwise.
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The main resultThe main result

Definition.For any cycle γ in WA, we define the upper word σγ by :

σγ =
∏
s∈Sγ

a
e(s,γ)
s ,

where e(s, γ) is 1 (resp. -1) if the crossing is positive (resp. negative), and

as the word of Arvola of s and Sγ the set of segment of WA intersecting

uppermost γ.
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In the example at the left, the segment

s (dashed line) is the only one upper

segment of the cycle γ. The Arvola’s

word of s is as = x2x4x
−1
2 . So we ob-

tain that :

σγ = x2x
−1
4 x−1

2 ,

because the crossing between γ and s is negative.

Definition. For any cycle ε in M(A), we define the uncrossing word δε
as a product of the xi such that δεε is the path in Im(σ) corresponding

to ε (i.e. such that ∀e ∈ π1(ΓA), e ∈ σ−1(ε)⇒ σ(e) = δεε).

Let S be the normal sub-group of π1(M(A)) generated by the elements

δεεσ
−1
ε , where ε are the cycles of π1(M(A)).

Theorem ([BGB12]). Let A be a complex line arrangement, MA be the

boundary manifold, and ΓA the incidence graph of A. There exists a

group S such that the following short sequence is exact.

0→ S
φ−→ π1(M(A))

i∗−→ π1(E(A))→ 0,

where i∗ is induced by the inclusion of M(A) in E(A).

Furthermore, a presentation of S can be computed from the wiring dia-

gram WA,γ.
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Moreover, the generators of this presentation of S can be expressed in terms

of the generators of Proposition below.
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Sketch of the proof :Sketch of the proof :

•The surjectivity of i∗ comes from the Zariski-Van Kampen and the isomor-

phism between π1(CP2 −A) and π1(C
2 − (A− L0)).

•Since S is constructed as a subgroup of π1(M(A)), then Φ is one-to-one.

•We glue on the cycle of the boundary manifold some 2-cells which give the

retractation of δεε on σε. So the composition map i∗ ◦ Φ is zero.

•To show the exactness of the short exact sequence, we prove that the relation

of the quotient π1(M(A))/S implies the usual relation of π1(E(A)).
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