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1. First steps on the trail

A line arrangement is a �nite set A = {ℓ1, . . . , ℓn} of complex projective lines in CP2. Each line

ℓi can be de�ned as the zero locus of a 1-form αi. The de�ning polynomial of A is then the product

Q(A) =
∏n

i=1 αi. The vanishing points of Q(A) are the zero loci Z(A) of the arrangement A, and it

can be de�ned as the union of the lines of A, i.e. Z(A) =
⋃n

i=1 ℓi ⊂ CP2. The complement of A is

M(A) = CP2 \ Z(A). The arrangement A is a complexi�ed real arrangement, if there exists a system

of coordinates of CP2 such that each 1-form ℓi has an equation with real coe�cients1. On the �rst

hand, the de�nition of A as the vanishing points of the polynomial Q(A) endowed it with a structure

of algebraic plane curve; on the other hand, A is also de�ned as the vanishing locus of 1-forms that

makes it a hyperplane arrangement. This speci�c position of line arrangement at the intersection of

these two fundamental domains of mathematics provides to the study of line arrangements a myriad

of aspects. Our main focus is on the topology of line arrangements, nevertheless combinatorial or

geometric aspects will play important roles in this study.

1.1. Origins: Hyperplane arrangements & Algebraic plane curves.

The study of hyperplane arrangements takes its origins in the study of �nite re�ection groups and

braid groups. Indeed, the pure braid space M = {x ∈ Cl | xi ̸= xj for i ̸= j} is the complement of a

hyperplane arrangement. In 1962, Fadell, Fox, and Neuwirth [30, 39] proved that this space is K(π, 1),

opening the path to the study of the topology of hyperplane arrangements complement. Then, Arnol'd

gave a �nite presentation of the cohomology ring H∗(M) depending only on the intersection lattice of

the arrangements [4]. In the same paper, he conjectured that the cohomology ring of the complement

of any hyperplane arrangement is torsion-free and generated by some speci�c one-dimensional classes.

In 1971, Brieskorn gave a proof of that fact in a Bourbaki Seminar talk [16]. This result has been

extended by Brieskorn and Saito to generalized Artin groups [17]. Independently, Deligne also obtained

the same generalization [25]. In addition, he proved that when the associated arrangement is simplicial2,

its complement is an Eilenberg�MacLane space, more precisely it is K(π, 1). This solved a conjecture

made by Brieskorn the year before during the Bourbaki Seminar. Finally, the original presentation of

H1(M) obtained by Arnol'd has been generalized in [66] to any hyperplane arrangement by Orlik and

Solomon in 1980. In particular, this implies that the cohomology ring of a hyperplane arrangement

complement is determined by its intersection lattice. This naturally leads to the following question.

Question. How much of the embedded topology of a hyperplane arrangement is determined by its

intersection lattice?

In 1925, Enriques questioned the existence of complex algebraic function z of x and y, possessing a

preassigned curve f as branch curve [29]. In a private conversation with Zariski, Lefschetz reduced this

problem to the determination the fundamental group of the given curve complement. Then, during

the 30s', Zariski published a series of three papers [88, 89, 90] in which he proved the existence of two

irreducible sextics with six cusps that have non-isomorphic fundamental groups. In both cases, the

fundamental group is a �nite group of order 6, but Zariski proved that it is non-Abelian if and only

if the six cusps lie on a conic. Even if he gave an explicit equation of the curve with a non-Abelian

fundamental group, we had to wait �fty-�ve years and the paper of Oka [63] to have an equation for

1Note that this condition is stronger than to assume that Q(A) is a polynomial with real coe�cients.
2An arrangement is simplicial if it is a complexi�ed real arrangement and its complement in the real plane is the

disjoint union of simplicial cones.
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the Abelian case3. Zariski claimed that only two families of such cuspidal sextics exist. Degtyarev

classi�ed in [24] the other families of sextics. In [5], Artal suggested calling such couples of curves with

the same local singularities yet di�erent embedded topology a Zariski pair. During the end of the last

century, various authors produced new examples of Zariski pairs: Artal [5], Oka [64], Shimada [75] and

Degtyarev [23]. We refer to the survey [9] by Artal, Cogolludo and Tokunaga for more details about

Zariski pairs of algebraic plane curves.

Extending the underlying meaning of local types of singularities into the notion of combinatorics [5],

one can extend the previous de�nition of Zariski pairs to any algebraic plane curve (not necessarily

irreducible). The �rst example4 of such reduced Zariski pair has been exhibited by Artal in [5]. It was

at this point that this story met the previous one in the form of the following question.

Question. Does Zariski pairs of line arrangements exist?

1.2. Topology of line arrangements.

The result of Orlik and Solomon [66] suggests that the topology of a line arrangement is determined

by its intersection lattice5; while Zariski's works hint the converse [88, 89, 90].

1.2.1. Homotopy of the complement.

The �rst step to tackle this problem was to determine the fundamental group of a line arrangement.

The �rst method to compute a �nite presentation is due to Zariski and van Kampen [88, 80] in

the general context of algebraic curves. In [20], Chissini noticed that this presentation involves a

powerful invariant: the braid monodromy (see also [19, 60]). In the particular case of complexi�ed real

arrangements, Randell gave an algorithm based on the real picture of the arrangement to compute the

fundamental group [68, 69, 73]. Then, it has been adapted to any line arrangement by Arvola [14] using

the so-called braided wiring diagram. It is a diagrammatic method to encode the braid monodromy of a

line arrangement. Recently, Yoshinaga gave another presentation in the particular case of complexi�ed

real arrangements [87]. We can also mention the presentation obtained in [38] using the inclusion

of the boundary manifold6 in the complement. Several examples of fundamental groups and various

invariants have been computed by Suciu in [78]. In this paper, he noticed that the lower central series

quotients may have some torsion, and he queries whether it is determined by the intersection lattice

or not.

In a wider perspective, mathematicians are also interested by the homotopy type of the complement.

In [32], Falk constructed two homotopy-equivalent arrangements with the same weak combinatorics7

yet di�erent intersection lattices. In the other direction, Jiang and Yau proved that the homeomor-

phism type of the complement determines the intersection lattice [52] (see also Di Pasquale [27]). We

refer to the survey of Falk and Randell for various open problems on the homotopy of hyperplane

arrangements [36].

3I didn't wait that long since I was only 6 years old when Oka's paper has been published.
4These curves are formed by a smooth cubic and three in�ectional tangent lines. Nowaday, such curves are known as

the 3-Artal curves [15].
5The intersection lattice is the equivalent for hyperplane arrangements of the combinatorics for algebraic plane curves.

In the case of line arrangements, they will be used as synonyms.
6The boundary manifold of an arrangement A is a graph 3-manifold, in the sense of Waldhausen [81], de�ned as the

boundary of a regular tubular neighborhood of Z(A) in CP2.
7The weak combinatorics is given by the number of lines, the number of singular points for each multiplicity and their

repartition among the lines. It di�ers from the combinatorics, by its lack of incidence relations between the lines.
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1.2.2. Zariski pairs of line arrangements exist!

It was in 1998 that Rybnikov discovered the �rst example of a Zariski pair of line arrangements [71].

The Rybnikov arrangements are formed by 13 lines with only double and triple points and are de�ned

over Q[ζ3], with ζ3 a primitive third root of unity. To distinguish their topology, Rybnikov introduced

an invariant of the fundamental group of the arrangement based on its lower central series. The

di�culty of Rybnikov's proof made it hard to review, and he almost gave up publishing it. It was

�nally published in 2011 [72]. Meanwhile, Artal, Carmona, Cogolludo and Marco published a detailed

proof of Rybnikov's result [8].

The second example of a Zariski pair appeared in 2005, and it is due to Artal, Carmona, Cogolludo

and Marco [7]. Their example is formed by two arrangements of 11 lines with double and triple points

together with a unique point of multiplicity 5. They have the particularity to be complexi�ed real

arrangements de�ned over Q[
√
5], and their topologies are distinguished using the braid monodromy.

It is a �ne invariant of the embedded topology which determines the homotopy type of the comple-

ment [54]. Nevertheless, this di�erence between the braid monodromies does not imply a di�erence

between neither the fundamental groups, nor the homeomorphism types of the complements. Until

now, we did not know whether they are homeomorphic or not. Therefore, this strengthens our interest

for the Falk and Randell problem 1.3 in [36].

Problem. Is the fundamental group of a complexi�ed real arrangement determined by its intersection

lattice?

1.2.3. My contributions.

The contents presented in this manuscript shed fresh insights on the study of line arrangements.

The introduction of a linking invariant for line arrangements enables the detection of new Zariski

pairs (Sections 2 and 4). Notably, the diversity of these pairs facilitates the resolution of several open

questions, such as the combinatorial nature of the fundamental group of complexi�ed real arrangements

(Section 5.1) or of Galois-conjugated arrangements (Section 2.3). By combining this invariant with

Rybnikov's idea, we achieved to generalize his construction (Section 3). Remarkably, this approach

also leads to Zariski pairs that are homotopy-equivalent yet possess non-homeomorphic complements

(Section 5.2).

Our exploration of Zariski pairs of line arrangements naturally guides us toward an examination of

the topological aspects of the moduli space of line arrangements. Inspired by the pioneering work of

Nazir and Yoshinaga, we extended their combinatorial class of C3 arrangements of simple type (Sec-

tion 6.5). Subsequently, we established a sharp upper bound for the number of connected components

of the moduli space (Section 7).

1.3. De�nitions and notations.

To avoid confusion and misleading, let us �x some de�nitions and notations. They will be used across

all this manuscript. If di�erent notations or assumptions are made for some statements, they will be

explicitly mentioned. The set of all line arrangements with n lines is denoted by Arrn; furthermore, in

this manuscript, n will always denote the cardinality of an arrangement A.

1.3.1. Topology.

The main object of our interest in this manuscript is the topology of an arrangement A. It is de�ned
as the homeomorphism type of (CP2,Z(A)). A meridian around the line ℓ ∈ A is an oriented path

homotopically equivalent to the boundary of a small disc transverse to ℓ at a smooth point of Z(A).

It is denoted by mℓ or mℓ. Depending on the context, a meridian can be considered either as a path
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in M(A), as its homotopy class in π1(M(A)) or as its homology class in H1(M(A)). The oriented

topology of A is the restriction of the topology to the class of homeomorphisms preserving both the

global orientation of CP2 and the local orientation of the meridians mℓ.

An ordered arrangement is a pair (A, ω), where A ∈ Arrn and ω is a bijective map ω : A −→
{1, . . . , n}, called the order on A. For the sack of brevity, we often express an ordered arrangement

as a set A = {ℓ1, . . . , ℓn} where the indices of the lines are chosen in a compatible way with the order

ω, i.e. such that ω(ℓi) = i, for any ℓi ∈ A. The ordered topology of (A, ω) is the restriction of the

topological type to homeomorphisms respecting the order ω (i.e. to homeomorphisms h : CP2 → CP2

such ω(ℓi) = ω ◦h(ℓi) for all i ∈ {1, . . . , n}). When ω is the order given by the indices then the ordered

topology is the homeomorphism type of the tuple (CP2, ℓ1, . . . , ℓn). In this manuscript, we consider

only ordered arrangements (without specifying each time that it is ordered). Exceptions to this rule

occur, for example when we obtain Zariski pairs, they are explicitly indicated each time.

1.3.2. Combinatorics.

In [5, Remark 1.2], the combinatorics of an algebraic plane curve C is de�ned as the data of the

degree of each irreducible component C1, . . . , Cn of C, the list of the topological type Σ1, . . . ,Σm of

the singular points of C, and for each branch Σj
i of a singularity Σi the irreducible component Ck of C

which contains Σj
i . Orlik and Terao [67, De�nition 1.12] de�ne the intersection lattice of a hyperplane

arrangement as the set of all non-empty intersections of elements of the arrangement. When A is a

line arrangement then this de�nition can be reduced to the set of all the maximal subsets AP of A
with a non-empty intersection8. As already mentioned, in the context of line arrangement these two

de�nitions are equivalent. For convenience in the notation, we will mainly use the reduced version of

the intersection lattice; nevertheless, since our main in�uence comes from the study of algebraic curves,

it will be called combinatorics in this manuscript. Explicitely, the combinatorics C(A) of A is given

by:

C(A) =

AP ⊂ A

∣∣∣∣∣∣
⋂

ℓi∈AP

ℓi ̸= ∅ and ∀ℓ ∈ A \ AP : ℓ ∩
⋂

ℓi∈AP

ℓi = ∅

 .

Frequently, AP will be identi�ed as the singular point P ∈ Sing(A) of Z(A). The multiplicity of a

singular point P is m(P ) = |AP |, it is a multiple point if m(P ) ≥ 3.

Two arrangements A1 and A2 are combinatorially equivalent, if there exists a one-to-one set-

correspondence ϕ between A1 and A2 such that for all AP ∈ C(A), one has ϕ(AP ) ∈ C(A2). This

equivalence is written C(A1) ∼ C(A2). When A1 and A2 are two ordered arrangements, with respec-

tive orders ω1 and ω2, then ϕ needs, in addition, to respect the orders, i.e. ω1(ℓi) = ω2 ◦ ϕ(ℓi) for all
i ∈ {1, . . . , n}.

The automorphism group of a combinatorics C(A) is the subgroup of the permutation group Σ(A)

which �xes C(A). More precisely, one has:

Aut(C(A)) = {σ ∈ Σ(A) | ∀AP ∈ C(A), σ(AP ) ∈ C(A)}.

An abstract line combinatorics is a combinatorial structure that mimics the combinatorics of a line

arrangement. It is de�ned as C = (L,P) such that P is a subset of the powerset of L and it veri�es

(1) for all P in P, |P | ≥ 2,

(2) for all ℓ1 ̸= ℓ2 ∈ L, there exists a unique P ∈ P such that ℓ1 ∈ P and ℓ2 ∈ P .

8In this context, maximal means that for any line ℓ ∈ A \ AP , the intersection ℓ ∩
(⋂

ℓi∈AP
ℓi
)
is empty.
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If A is a line arrangement then C(A) is an abstract line combinatorics. Nevertheless, the converse

is not true in general. Indeed, using Pappus' hexagon theorem, one can construct an abstract line

combinatorics which is not the combinatorics of a line arrangement.

1.3.3. Moduli space.

The realization space R(A) of an ordered arrangement A (or equivalently of C(A)) is the subset

R(A) of Arrn de�ned by:

R(A) = {B ∈ Arr | C(A) ∼ C(B)}.

A line ℓi : aix+ biy+ ciz = 0 in CP2 can be considered as a point (ai : bi : ci) in the dual ˇCP2, then an

element of Arrn is identi�ed with a point in
( ˇCP2

)n
. Three distinct lines ℓi, ℓj and ℓk are concurrent

if and only if

∆i,j,k := det(ℓi, ℓj , ℓk) =

∣∣∣∣∣∣∣
ai aj ak

bi bj bk

ci cj ck

∣∣∣∣∣∣∣ = 0.

By de�nition, the realization space of a line combinatorics C(A) with A ∈ Arrn can be constructed as

a subset of
( ˇCP2

)n
as follows:

R(A) =


ℓi ̸= ℓj , ∀i ̸= j

(ℓ1, . . . , ℓn) ∈
( ˇCP2

)n
∆i,j,k = 0, if {ℓi, ℓj , ℓk} ⊂ AP , for a AP ∈ C(A)

∆i,j,k ̸= 0, otherwise

 .

There is a natural action of PGL3(C) on R(A). Indeed, any projective transformation preserves

lines intersection, so if T ∈ PGL3(C), then the arrangements T · A = {T (ℓ1), . . . , T (ℓn)} and A are

combinatorially equivalent. That is to say, T ·A ∈ R(A). We de�ne thus the moduli space M(A) of A
(or of C(A)) as the quotient ofR(A) by this action of PGL3(C). It is worth noticing that the realization
space and moduli space that we consider here correspond respectively to the ordered realization space

Σord(C) and ordered moduli space Mord(C) in [7, De�nition 3.3].

As proved by Mnëv in [59], the moduli space of a line arrangement can behave as badly as one

can imagine. Vakil quali�es such behavior as Murphy's law [79]. More precisely, Mnëv Universality

Theorem states that every singularity of �nite type over Z appears in at least one moduli space.

Recently, it was shown in [22] that the realization space of line arrangements is smooth for |A| ≤ 11,

and then nodal singularities appear for |A| = 12. In addition, there are several basic geometric or

topological aspects of the moduli space that cannot be fully predicted by a combinatorial study, as

shown by the classical Pappus' hexagon theorem.

2. An adaptation of the linking number to line arrangements

In this �rst section, we present a topological invariant of line arrangements named the I-invariant9.
It is inspired by the linking number of Knot Theory and was �rst introduced in [12]. It can be

computed due to an Abelian version of the main result of [38]. This invariant is used in [41] to

distinguish an arithmetic Zariski pair. It appears that this pair also has the property to possess

non-isomorphic fundamental groups [11]. In the last section, two generalizations are given. First, a

re�nement of the I-invariant introduced by Cadegan-Schlieper in his Ph.D. [18], then studied in [45];

second, a generalization to algebraic plane curves de�ned in [46], and used in [47, 15] to distinguish

the Shimada's curves [76] and the k-Artal curves [5].

9The notations used here are the one of [18, 45].
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2.1. The I-invariant.
A character on an arrangement A is a morphism ξ : H1(M(A);Z) → C∗. It is a torsion character if

all the images are roots of unity. Due to Orlik and Solomon Theorem [66], H1(M(A);Z) is the Abelian
group generated by the homology class of the meridians mℓ, with the unique relation

∑
ℓ∈Amℓ = 0.

So, a character ξ can be described by associating to each line ℓ ∈ A a non-zero complex number ξ(mℓ),

such that
∏

ℓ∈A ξ(mℓ) = 1. As a consequence, a character is a combinatorial object.

The incidence graph Γ(A) associated to A is the bipartite graph given by:

• the �rst set of vertices is composed of the point-vertices vP , for AP ∈ C(A),

• the second set of vertices is composed of the line-vertices vℓ, for ℓ ∈ A,
• the (oriented) edges of Γ(A), denoted by (P → ℓ), join vP to vℓ if and only if ℓ ∈ AP .

A cycle γ of Γ(A) is an element of H1(Γ(A);Z). So, it can be expressed as a chain of oriented edges

of Γ(A):

γ =
∑

(P→ℓ)∈Γ(A)

a(P→ℓ)(P → ℓ), with a(P→ℓ) ∈ Z,

and which veri�es the boundary condition:
∑

(P→ℓ)∈Γ(A) a(P→ℓ)(vℓ−vP ) = 0. It is worth noticing that

both Γ(A) and γ are also combinatorial objects.

De�nition 2.1. An inner-cyclic triple (A, ξ, γ) is formed by an arrangement A, a character ξ on A
and a cycle γ ∈ H1(Γ(A);Z) such that:

(ICT1) for all (P → ℓ) ∈ Γ(A), if a(P→ℓ) ̸= 0 then ξ(mℓ′) = 1 for all ℓ′ ∈ AP ,

(ICT2) for all (P → ℓ) ∈ Γ(A) and P ′ ∈ Sing(A), if a(P→ℓ) ̸= 0 and ℓ ∈ AP ′ then
∏

ℓ′∈AP ′ ξ(mℓ′) =

1.

Two inner-cyclic triples (A1, ξ1, γ2) and (A2, ξ2, γ2) are combinatorially equivalent if C(A1) ∼ C(A2)

and this equivalence sends ξ1 on ξ2 and γ1 on γ2,

The boundary manifold B(A) of A is the boundary of a regular tubular neighborhood of Z(A).

From Neumann [62] and Westlund [84], B(A) is a graph manifold based on Γ(A). So, it is determined

by the combinatorics of A. A coherent embedding of Γ(A) in B(A) is an embedding as described

in [81, Section 9]. Basically, such an embedding sends the edge (P → ℓ) in the boundary of a tubular

neighborhood of ℓ. The embedding of Γ(A) in B(A) described in [38] is an explicit example of such a

coherent embedding.

Let j : H1(Γ(A);Z) → H1(B(A);Z) and i : H1(B(A);Z) → H1(M(A);Z) be respectively the map

induced by a coherent embedding Γ(A) ↪→ B(A) and the inclusion B(A) ↪→ M(A), on the �rst

homology groups. We denote by Ψ : H1(Γ(A);Z) → H1(M(A);Z) the composed map i ◦ j.

De�nition 2.2. Let (A, ξ, γ) be an inner-cyclic triple. The associated I-invariant is given by:

I(A, ξ, γ) = ξ ◦Ψ(γ) ∈ C∗.

It is crucial to note that I(A, ξ, γ) is independent of the choice of the coherent embedding. Indeed,
let (A, ξ, γ) be an inner-cyclic triple, if j1 and j2 are two di�erent coherent embeddings then due to

Conditions (ICT1) and (ICT2) one has i ◦ j1(γ)− i ◦ j2(γ) ∈ ker(ξ).

It follows from this construction that I(A, ξ, γ) is an invariant of the ordered and oriented home-

omorphism type of the complement M(A). In section 2.3, an example of Zariski pair distinguished

using this I-invariant is exhibited.
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Theorem 2.3 ([12, 45]). If (A1, ξ1, γ1) and (A2, ξ2, γ2) are two combinatorially equivalent inner-cyclic

triples such that any automorphism of Γ(Ai) respects its bipartite structure, and M(A1) and M(A2)

have equivalent ordered and oriented topologies10, then one has:

I(A1, ξ1, γ1) = I(A2, ξ2, γ2).

Remark 2.4. In [12], it is proven that the I-invariant is an invariant of the (ordered and oriented)

topology of the pair (CP2,Z(A)). The improvement to an invariant of the complement M(A) is

obtained in [45].

Remark 2.5. The I-invariant has been generalized by Cadegan-Schlieper in his PhD thesis [18]. The

main idea is to take elements in H1(M(A);G) ⊗Z H1(Γ(A);Z) for an Abelian group G, rather than

considering (ξ, γ) ∈ H1(M(A);C∗) × H1(Γ(A);Z). This allows to reduce the Conditions (ICT1)

and (ICT2). This generalization is studied in [45] and has been named the loop-linking number.

More details are given in Section 2.4.1

Idea of the proof. Assume that there exists a homeomorphism h :M(A1) →M(A2). Then h induces a

homeomorphism hB : B(A1) → B(A2) which respects the graph structures of the boundary manifolds,

see [82, 81]. This implies that we have the following commutative diagram.

H1(Γ(A1)) H1(B(A1)) H1(M(A1))

H1(Γ(A2)) H1(B(A2)) H1(M(A2))

j1

Id

i1

hB
∗ h∗

j2 i2

The result then follows from the independence of I(A, ξ, γ) from the coherent embeddings j1 and

j2. □

Since the lines of A are de�ned by complex 1-forms αi, one can de�ne A the complex conjugate

arrangement of A, as the arrangement formed by the lines with complex conjugate equations. If A is

a complexi�ed real arrangement then A = A. Remark that A and A are combinatorially equivalent.

Proposition 2.6. Let (A, ξ, γ) be an inner-cyclic triple. The triple (A, ξ, γ) is inner-cyclic and

combinatorially-equivalent to (A, ξ, γ). One has that

I(A, ξ, γ)−1 = I(A, ξ, γ).

In particular, if A is a complexi�ed real arrangement then I(A, ξ, γ) ∈ {−1, 1}.

From this proposition, the following question naturally appears.

Question 2.7. Does it exist Zariski pairs of complexi�ed real arrangements distinguished by the I-
invariant?

2.2. Methods of computation.

In [38], the inclusion map i∗ : π1(B(A)) → π1(M(A)) is explicitly described. An Abelian version is

used in this section to compute the I-invariant. In the particular case of complexi�ed real arrangements,

an e�cient diagrammatic method is given in Section 4.

10We refer to [45, Section 2.2] for the de�nition of the ordered and oriented topology of an arrangement complements.
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2.2.1. Via the braid monodromy.

Let P0 be a point ofM(A), and F0 be a line passing through P0 generic with Z(A), i.e. #F0∩Z(A) =

n. Let q : CP2 \ P0 → CP1 be the natural projection de�ned by P0. For each edge (P → ℓ) of ΓA, we

de�ne the geometric braid B(P→ℓ) with n −m(P ) + 1 strands as follows. Let RP be a smooth path

(without self-intersection) in CP1 from q0 := q(F0 \P0) to q(P ) and such that q(Sing(A))∩RP = q(P ).

This last condition implies that the C-�ber over any point of RP intersects A(P→ℓ) = {ℓ} ∪ (A \ AP )

in exactly n−m(P ) + 1 points. So, the geometric braid B(P→ℓ) ∈ Bn−m(P )+1 is de�ned as

B(P→ℓ) = Z(A(P→ℓ)) ∩ q−1(RP ) ⊂ RP × C.

Remark 2.8. If a braid monodromy of A based in P0 is given by (b1t1b
−1
1 , · · · , bmtmb−1

m ), where ti is

the local full-twist associated to the singular point Pi ∈ Sing(A) (see [60, 21] for details about braid

monodromy), then BPi→L is the sub-braid of bi obtained by removing the strands associated to the

lines of APi \ ℓ.

For a �xed system of coordinates, let ℜ : RP × C → RP × R be the projection on the real part of

the term C in RP × C. Up to a slight perturbation, one can assume that ℜ(B(P→ℓ)) has only double

points. So, the braid diagram of B(P→ℓ) associated to ℜ can be given as σε1j1 · · ·σ
εk
jk
, with εi ∈ {−1, 1},

and σ1, . . . , σn−m(P ) are the classical generators of the braid group Bn−m(P )+1. Let ulkℓ(B(P→ℓ)) be

the upper-linking of ℓ with B(P→ℓ) de�ned by

ulkℓ(B(P→ℓ)) =
k∑

i=1

εi.δℓ(σ
εi
i ),

where δℓ(σ
εi
i ) is the meridian of the strand over-crossing in σεii if the under-crossing strand is associated

to ℓ, otherwise it is 0.

Theorem 2.9. Let (A, ξ, γ) be an inner-cyclic triple. One has the following expression for the I-
invariant:

I(A, ξ, γ) =
∏

(P→ℓ)∈Γ(A)

ξ
(
ulkℓ(B(P→ℓ))

)a(P→ℓ) .

Remark 2.10. A similar expression for the loop-linking number is given in [45, Theorem 3.2].

Idea of the proof. In [38], an explicit description of the map i∗ : π1(B(A)) → π1(M(A)) is given. So,

we consider an Abelian version of i∗ to compute the value of Ψ(γ). Fix a coherent embedding e as

described in [38], and assume that γ is given by:

γ =
(
(Pi,k → ℓi)− (Pi,j → ℓi)

)
+
(
(Pi,j → ℓj)− (Pj,k → ℓj)

)
+
(
(Pj,k → ℓk)− (Pi,k → ℓk)

)
,

i.e. γ is a triangle in Z(A). To compute Ψ(γ), we attach a 2-cell along e(γ) and study its intersection

with the lines of A\{ℓi, ℓj , ℓk}. It appears that the term ulkℓ(B(P→ℓ)) corresponds to the contribution

of an edge (P → ℓ) in γ.

Since triangular cycles generate H1(Γ(A)), then one can use the previous description to compute

the value of Ψ(γ) for any γ ∈ H1(Γ(A)), and one has

Ψ(γ) =
∑

(P→ℓ)∈Γ(A)

a(P→ℓ).ulkℓ(B(P→ℓ)).

The expression then follows from the de�nition of I(A, ξ, γ). □
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2.2.2. Via the braided wiring diagram.

Roughly speaking, the braided wiring diagram, or shortly the wiring diagram, is the trace of the

arrangement A in the �bers over a smooth path ρ : [0, 1] → CP1 starting from q0 and passing through

all the points of q(Sing(A)), see [14, 21] for details braided wiring diagrams. It is a singular braid,

whose singular points correspond to the singular points of A.

We order the points {P1, . . . , Pm} of Sing(A) according to the order of their image in ρ, and we

re-parametrized ρ such that ρ(i/m) = Pi, for i ∈ {0, · · · ,m}. A wiring diagram W(A) of A can be

given as an ordered m-tuple of pairs formed by a braid bi ∈ Bn and a singular point Pi ∈ Sing(A):

W(A) =
[
[b1, P1], · · · , [bm, Pm]

]
, (WD)

where bi = A ∩ q−1
(
P̂i−1Pi

)
∈ Bn, with P̂i−1Pi = ρ

(
( i−1

m + ε, i
m − ε)

)
for ε small enough.

For a �xed i ∈ {1, · · · ,m} and ℓ ∈ APi , the braid B(Pi→ℓ) can be obtained from W(A) as follows.

Consider that the path RPi de�ned in the previous section is a slight deformation of ρ
(
(0, i

m)
)
which

avoids the points q(P1), . . . , q(Pi−1) turning around them counter-clockwise. In such a situation, we

de�ne:

BPi→ℓ = b1 · T1 · b2 · · · · · bi−1 · Ti−1 · bi,

where Tj is the local positive half-twist of the strands which correspond to the lines of APj , see [12,

Section 4] for an explicit example. The braid B(Pi→ℓ) is obtained from B(Pi→ℓ) by removing the strands

which correspond to the lines APi , except L.

The computation is completed using Theorem 2.9. Due to Remark 2.10, it is also possible to compute

the loop-linking number using this method.

2.3. Application: detection of an arithmetic Zariski pair.

Consider the combinatorics K11 = (L,P) de�ned by L = {ℓ1, · · · , ℓ11} and

P =


{ℓ1, ℓ2} , {ℓ1, ℓ3} , {ℓ1, ℓ4, ℓ5, ℓ6} , {ℓ1, ℓ7, ℓ11} , {ℓ1, ℓ8, ℓ9, ℓ10} , {ℓ2, ℓ3} , {ℓ2, ℓ4, ℓ10, ℓ11}
{ℓ2, ℓ5, ℓ9} , {ℓ2, ℓ6, ℓ7, ℓ8} , {ℓ3, ℓ4, ℓ9} , {ℓ3, ℓ5, ℓ8} , {ℓ3, ℓ6, ℓ11} , {ℓ3, ℓ7, ℓ10} , {ℓ4, ℓ7}
{ℓ4, ℓ8} , {ℓ5, ℓ7} , {ℓ5, ℓ10} , {ℓ5, ℓ11} , {ℓ6, ℓ9} , {ℓ6, ℓ10} , {ℓ7, ℓ9} , {ℓ8, ℓ11} , {ℓ9, ℓ11}


Proposition 2.11. The automorphism group of K11 is cyclic of order 4, and it is generated by:

σ = (ℓ1, ℓ2)(ℓ4, ℓ6, ℓ8, ℓ10)(ℓ5, ℓ7, ℓ9, ℓ11).

The arrangements de�ned by the following equations admit K11 as combinatorics:

ℓ1 : z = 0, ℓ2 : x+ y − z = 0,

ℓ3 : αx+ y = 0, ℓ4 : αx+ z = 0,

ℓ5 : x = 0, ℓ6 : x− z = 0,

ℓ7 : −x+ α2y + z = 0, ℓ8 : y = 0,

ℓ9 : y − z = 0, ℓ10 : αy − (α+ 1)z = 0,

ℓ11 : −x+ α2y + (α3 + 1)z = 0.

where α is a root of the 5th cyclotomic polynomial Φ5 = X4 +X3 +X2 +X + 1. We denoted these

arrangements by M± and N± in such a way that M+ and M− (resp. N+ and N−) are complex

conjugates, and M+ (resp. N+) corresponds to the root α ≈ −0.81 + 0.59i (resp. α ≈ 0.31 + 0.95i).

Braided wiring diagrams of M+ and N+ are pictured in Figures (1) and (2) respectively.

Remark 2.12. There exists a projective transformation T ∈ PGL3(C) which permutes cyclically M+,

N+, M− and N−. This transformation is a geometric realization of the generator σ of the automor-

phism group of K11. This implies that M± and N± have all the same topology.
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L11
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Figure 1. Wiring diagram of M+ with L1 as the line at in�nity.

L5

L6

L4

L8

L9

L10

L3

L2

L7

L11

Figure 2. Wiring diagram of N+ with L1 as the line at in�nity.

Consider the following cycle γ ∈ H1(Γ(K)):

γ =
(
(P1,2 → ℓ1)− (P1,3 → ℓ1)

)
+
(
(P2,3 → ℓ2)− (P1,2 → ℓ2)

)
+
(
(P1,3 → ℓ3)− (P2,3 → ℓ3)

)
,

and the character ξ de�ned by:

ξ : (ℓ1, . . . , ℓ11) 7−→ (1, 1, 1, ζ, ζ, ζ3, ζ3, ζ4, ζ4, ζ2, ζ2),

where ζ is a 5th root of unity.

Proposition 2.13. The triples (M±, ξ, γ) and (N±, ξ, γ) are inner-cyclic triples.

Theorem 2.14. There is no homeomorphism preserving both orientation and order between any two

pairs among M(M+), M(M−), M(N+) and M(N−).

Proof. Let ΨA be the map from H1(Γ(A)) to H(M(A)), for A = M+ or A = N+. Following the

method given in Section 2.2.2 applied on the braided wiring diagrams given in Figures (1) and (2), one

has that:

ΨM+(γ) = m7 +m8 +m10 and ΨN+(γ) = −m7.

Then, we apply the character ξ and using Proposition 2.6, we obtain that:

I(M+, ξ, γ) = ζ4, I(M−, ξ, γ) = ζ, I(N+, ξ, γ) = ζ2, I(N−, ξ, γ) = ζ3.

We conclude using Theorem 2.3. □

Corollary 2.15. There is no order-preserving homeomorphism between the complements M(M±) and

M(N±).
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To remove the ordered condition in the previous lemma, we can apply a strategy similar to the one

of [7]. That is to say, we add a line ℓ12 to the combinatorics K to obtain a combinatorics with a trivial

automorphism group. Note that the choice of this line ℓ12 is not unique, we make an arbitrary one in

the following paragraph.

By Proposition 2.11, we know that any non-trivial automorphism of the combinatorics K permutes

the four points of multiplicity 4. So, we add a line ℓ12 which passes though {ℓ1, ℓ4, ℓ5, ℓ6}. To completely

�x this line ℓ12, we can also assume that it passes though {ℓ9, ℓ11}. We denote by M± and N±, the

arrangement M± and N± with such an additional line ℓ12.

The arrangements M± and N± are combinatorially equivalent. Indeed, if the addition of this twelfth

line creates other multiple points, then they will be present in all M± and N±. This comes from the

fact that the arrangements M± and N± are Galois conjugate. We deduce the following corollary,

where the arrangements M± and N± are considered as non-order arrangements.

Corollary 2.16. There is no homeomorphism between M(M±) and M(N±).

A Zariski pair is said to be arithmetic if the equations of the arrangements are Galois-conjugated in

a number �eld, so the arrangements M± and N± form arithmetic Zariski pairs. The topology of such

pairs cannot be distinguished by algebraic arguments. In particular, their fundamental groups have

the same pro�nite completions. In [11], the fundamental groups of the previous arrangements have

been studied.

Theorem 2.17. The fundamental groups π1(M(M)±) and π1(M(N)±) are not isomorphic.

Idea of the proof. The �rst step is to prove the homological rigidity of these arrangements. It is a

combinatorial property introduced by Marco in [57] which implies that any isomorphism between the

fundamental groups induces the identity at the homological level. The second step is to apply the

Alexander invariant isomorphism test of level 2 developed by Artal, Carmona, Cogolludo and Marco

in [8] to distinguish the Rybnikov arrangements. □

This provides the �rst example of arithmetic Zariski pair with non-isomorphic fundamental groups,

even in the larger context of algebraic plane curves. Other such examples are given in [45]. Their

fundamental groups are distinguished using the same method.

2.4. Generalizations of the I-invariant.
The I-invariant has been generalized in two directions. The �rst one has been mentioned many times

in the previous section, it is the loop-linking number introduced by Cadegan-Schlieper in his Ph.D.

thesis [18]. It is studied in [45] and allows the distinguishing of several new Zariski pairs, but also the

Rybnikov one, and so to solve a weak version of Falk and Randell Problem 1.2 in [36]. The second one

is a generalization to algebraic plane curves, and it is simply named the linking invariant [46]. It has

been studied in [47, 15]. In this section, we give a short overview of these two generalizations.

2.4.1. Loop-linking numbers.

Let G be an Abelian group. We consider the tensor space H1(M(A);G)⊗ZH1(Γ(A),Z). From Orlik-

Solomon [66], this space is determined by the combinatorics. The tensor linking group of A, denoted
by TLG(A, G), is the subgroup of H1(M(A);G)⊗Z H1(Γ(A),Z) formed by the elements which verify:

(TLG1) for all (P → ℓ), and all ℓ′ ∈ A containing P , we have λ(P→ℓ)(mℓ′) = 0G,

(TLG2) for all (P → ℓ), and all P ′ ∈ Sing(A) contained in ℓ, we have
∑

ℓ′∋P ′ λ(P→ℓ)(mℓ′) = 0G.
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Using the notations introduced in Section 2.3, we de�ne the map Ψ : H1(M(A);G)⊗ZH1(Γ(A),Z) →
H1(M(A);G)⊗Z H1(M(A);Z) by Ψ = IdH1(M(A);G)⊗(i ◦ j). The natural pairing of H1(M(A);G)⊗Z

H1(M(A);Z) is denoted by π.

De�nition 2.18. The loop-linking number of A associated to Λ ∈ TLG(A, G) is

L(A,Λ) = π ◦Ψ(Λ) ∈ G.

It is well-de�ned since the di�erence between two coherent embeddings vanishes when we take the

pairing π due to Conditions (TLG1) and (TLG2). For more details about this de�nition, we refer

to [18, Section 3.3.1]. Cadegan-Schlieper proves that the loop-linking number is an invariant of the

ordered and oriented topology, his result is improved in [45] where it is proven that it is an invariant

of the ordered and oriented homeomorphism type of the complement.

Theorem 2.19 (Proposition 21 in [18] and Theorem 2.6 [45]). Let A1 and A2 be two ordered line ar-

rangements. If there exists a homeomorphism h fromM(A1) toM(A2), which preserves the orientation

and the orders, then for any Λ ∈ TLG(A1, G),

L(A1,Λ) = L(A2, h∗(Λ)),

where h∗ : TLG(A1, G) → TLG(A2, G) is the isomorphism induced by h.

2.4.2. Linking invariant of algebraic plane curves.

Let C ∪ D be a reducible algebraic curve, decomposed into two nonempty subcurves C and D.
Consider the inclusion maps i : C \D ↪→ C and j : C \D ↪→ CP2 \D, and denote respectively by i∗ and

j∗ the induced map on the �rst homology groups. Note that

ker(i∗) ≃ H1(∂
⋃

C∈Irr(C)

C \ D) ≃
⊕

C∈Irr(C)

H1 (∂(C \ D)) ⊂ H1(C \ D).

De�nition 2.20. The indeterminacy subgroup with respect to C, denoted by JC , is the subgroup of

H1(CP2 \ D) de�ned as the image of
⊕

C∈Irr(C)H1 (∂(C \ D)) by j∗.

Let Γ(C ∪ D) be the incidence graph of the irreducible components of C ∪ D de�ned similarly than

for line arrangements in Section 2.1. This graph can naturally be embedded in C∪D. A cycle γ ∈ Γ(C)
is said to avoid D if its image by the inclusion Γ(C) ↪→ Γ(C ∪D) avoid any vertex (as well point-vertex

as component-vertex) associated to D. We denote by [γ] the class in H1(CP2 \ D)/JC of the image of

a cycle γ ∈ Γ(C) in C \ D ⊂ CP2 \ D. We also denote by IC the image of
⊕

C∈Irr(C)H1(C \ D) by j∗,

composed with the projection map H1(CP2 \ D) → H1(CP2 \ D)/JC .

De�nition 2.21. The oriented linking of C with D along γ, denoted by lkγ(C,D), is the coset of IC
in H1(CP2 \ D)/JC with respect to [γ]. In other words,

lkγ(C,D) = [γ]IC ⊂ H1(CP2 \ D)/JC .

Note that the above formula is well-de�ned, i.e. lkγ(C,D) does not depend on the choice of the

embedding of Γ(C ∪ D) in C ∪ D. Furthermore, we have the following description of JC .

Proposition 2.22. The indeterminacy subgroup JC is spanned by the elements of the form:∑
d∈D(P )

IP (b, d).mβP (d), for all P ∈ C ∩ D and all b ∈ C(P ),

where IP (b, d) denotes the intersection multiplicity of the local branches b and d at P , and mβP (d) is

given by a meridian of the irreducible component βP (d) of D containing d.
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As a consequence of Proposition 2.22, the group H1(CP2 \D)/JC is determined by the combinatorics

of the curve C ∪ D. So we can use the linking invariant to compare the topology of curves with the

same combinatorics. Indeed, we have the following theorem, which implies that the linking invariant

is an invariant of the oriented topology of (CP2, C ∪ D).

Theorem 2.23. Let ϕ be an orientation-preserving homeomorphism between two algebraic curves C1∪
D1 and C2 ∪D2. It induces an isomorphism ϕ∗ between H1(CP2 \D1)/JC1 and H1(CP2 \D2)/JC2, and

for any cycle γ1 ∈ ΓC1 avoiding D1, we have

ϕ∗(lkγ1(C1,D1)) = lkϕΓ(γ1)(C2,D2).

This linking invariant has been used to distinguish several Zariski pairs of algebraic plane curves.

In [46], it distinguishes the 3-Artal curves [5]. These curves are formed by a smooth cubic and 3

in�ectional tangent lines, but also the quartic with 3 bitangents. Then, in [15], it classi�es the topologies

of all the k-Artal curves. Finally, in [47], an equivalence between this linking invariant and the splitting

number introduced by Shirane in [77] is obtained. It allows us to prove that this linking invariant for

curves is not determined by the fundamental group of the complements. Indeed, it distinguishes the

Shimada's curves, which are known to be π1-equivalent [76]. This property still holds for the I-invariant
as shown in Corollary 5.17.

3. Gluing of arrangements & Multiplicativity theorem

Inspired by the idea of Rybnikov in [71, 72], where he constructs the �rst known example of a

Zariski pair by gluing together two MacLane arrangements, we present in this section a multiplicativity

theorem for the I-invariant under the gluing of two arrangements along a triangle. This result �rst

appears in [42]. It is then extended to the loop-linking invariant in [45]. In this context, it allows us

to distinguish the homeomorphism type of the complements of Rybnikov arrangements. This provides

a solution to a lighter version of Falk and Randell Problem 1.2 in [36]:

Problem. Find a general invariant of arrangement complements that distinguishes the two Rybnikov

arrangements, and generalize his construction.

3.1. De�nitions & statement.

An inner-cyclic triple (A, ξ, γ) is triangular if γ contains exactly three line-vertices. Throughout all

this section, when we consider a triangular we assume that the line vertices of γ are, vℓ1 , vℓ2 and vℓ3 .

Up to a relabelling, this is always possible.

Let A1 = {ℓ11, . . . , ℓ1n} and A2 = {ℓ21, . . . , ℓ2m} be two ordered arrangements (the order is given by

the indices). A gluing of A1 with A2 is a projective transformation ϕ such that

• ϕ(ℓ21) = ℓ11, ϕ(ℓ
2
2) = ℓ12 and ϕ(ℓ

2
3) = ℓ13,

• for all i ∈ {4, . . . ,m}, ϕ(ℓ2i ) /∈ A1.

The glued arrangement of A1 with A2 associated with ϕ is the ordered arrangement11:

A1△ϕA2 = {ℓ11, . . . , ℓ1n, ϕ(ℓ24), . . . , ϕ(ℓ2m)},

ordered as in the set above. A gluing ϕ is generic if for any small perturbation ϕ′ of ϕ which is

also a gluing, the arrangements A1△ϕA2 and A1△ϕ′A2 are combinatorially equivalent. In such case,

A1△ϕA2 is called a generic glued arrangement.

11Note that the gluing operation is not commutative for order arrangements.
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The lines of A1△ϕA2 are denoted by d1, . . . , dk, with k = n+m− 3, so that the order of A1△ϕA2

coincides with the indices. Their associated meridians in M(A1△ϕA2) are denoted by m1, . . . ,mk

respectively. The meridian of ℓji in H1(M(Aj)) is denoted by mj
i . Let ξ1 ∈ H1(M(A1)) and ξ2 ∈

H1(M(A2)) be two characters, and let ϕ be a gluing of A1 with A2. We de�ne the glued character

ξ1△ξ2 by:

ξ1△ξ2 :


H1(M(A1△ϕA2)) −→ C∗

mi 7−→ 1 , for i ∈ {1, 2, 3}
mi 7−→ ξ1(m

1
i ) , for i ∈ {4, . . . , n}

mi 7−→ ξ2(m
2
i−n+3) , for i ∈ {n+ 1, . . . , k}

Note that by Condition (ICT1) in De�nition 2.1, one has ξ1(m
1
i ) = 1 and ξ2(m

2
i ) = 1, for i ∈ {1, 2, 3}.

So, for these three indices, one has ξ1△ξ2(mi) = ξ1(m
1
i ) · ξ2(m2

i ). When there is no ambiguity on

the arrangements A1 and A2 (resp. on ξ1 and ξ2) the glued arrangement A1△ϕA2 (resp. the glued

character ξ1△ξ2) will be denoted by Aϕ (resp. Xϕ).

Theorem 3.1. Let (A1, ξ1, γ1) and (A2, ξ2, γ2) be two triangular inner-cyclic triples, and ϕ be a gluing

of A1 with A2. The triple (Aϕ,X, µ) is also a triangular inner-cyclic triple (where µ is the cycle

supported by the lines d1, d2 and d3). Furthermore, one has:

I(Aϕ,Xϕ, µ) = I(A1, ξ1, γ1) · I(A2, ξ2, γ2).

Note that the gluing ϕ is not necessarily a generic gluing.

Idea of the proof. The set of conditions for (Aϕ,X, µ) to be a triangular inner-cyclic triple, is the union

of the sets of conditions for (A1, ξ1, γ1) and (A2, ξ2, γ2) to be triangular inner-cyclic triples.

The multiplicativity relation comes from a similar fact, but with the expression of the I-invariant
given in Theorem 2.9. Indeed, the linking ulkℓ(B(P→ℓ)) can be divided into two part the linking with

the lines of d4, . . . , dn and with the lines dn+1, . . . , dk. □

3.2. Extended Rybnikov arrangements.

We consider the extended MacLane arrangements denoted by MLe
± introduced in [12]. They are

formed by the MacLane arrangements ML± with an additional line passing through two points of mul-

tiplicity 3 and one point of multiplicity 2. The combinatorics of the extended MacLane arrangements

is:

C(MLe
±) =


{ℓ1, ℓ2} , {ℓ1, ℓ3} , {ℓ1, ℓ4, ℓ5, ℓ6} , {ℓ1, ℓ7, ℓ8, ℓ9}

{ℓ2, ℓ3} , {ℓ2, ℓ4, ℓ9} , {ℓ2, ℓ5, ℓ8} , {ℓ2, ℓ6, ℓ7} , {ℓ3, ℓ4, ℓ7}
{ℓ3, ℓ5, ℓ9} , {ℓ3, ℓ6, ℓ8} , {ℓ4, ℓ8} , {ℓ5, ℓ7} , {ℓ6, ℓ9}

 .

The two realizations MLe
+ and MLe

− are given by the equations:

ℓ1 : z = 0, ℓ2 : x− a2y = 0, ℓ3 : x− ay = 0, ℓ4 : y − a2z = 0, ℓ5 : y − z = 0,

ℓ6 : y − az = 0, ℓ7 : x− z = 0, ℓ8 : x− a2z = 0, ℓ9 : x− az = 0,

where a is a root of the 3rd cyclotomic polynomial X2+X +1, i.e. a is a primitive third root of unity.

Consider γ the cycle of H1(Γ(C(MLe
±))) with line-vertices vℓ1 , vℓ2 and vℓ3 . In addition, let ξ ∈

H1(M(MLe
±)) de�ned by:

ξ : (ℓ1, . . . , ℓ9) 7−→ (1, 1, 1, ζ, ζ, ζ, ζ2, ζ2, ζ2),

where ζ ∈ C∗ is a primitive third root of unity.
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Proposition 3.2. The triples (MLe
±, ξ, γ) are triangular inner-cyclic triples. Furthermore, one has:

I(MLe
+, ξ, γ) = ζ and I(MLe

−, ξ, γ) = ζ2.

This proposition implies that there is no order and oriented preserving homeomorphism between the

complements of the extended MacLane arrangements. Nevertheless, the complex conjugation implies

a non-orientation preserving homeomorphism.

In his paper [71, 72], Rybnikov introduces four arrangements constructed by gluing together two

MacLane arrangements. Let us de�ne, similarly, the extended Rybnikov arrangements12 Re
±,± and

Re
±,∓. Let ϕ

+ (resp. ϕ−) be a generic gluing of MLe
+ with MLe

+ (resp. with MLe
−). One set:

Re
+,± = MLe

+△ϕ±MLe
±.

Their complex conjugates are denoted by Re
−,∓.

Theorem 3.3. The four triples (Re
±,±, ξ△ξ, γ) and (Re

±,∓, ξ△ξ, γ) are triangular inner-cyclic. Fur-

thermore, one has:

I(Re
±,±, ξ△ξ, γ) = ζ±1 and I(Re

±,∓, ξ△ξ, γ) = 1.

Corollary 3.4. There is no order-preserving homeomorphism between M(Re
±,±) and M(Re

±,∓).

Using a strategy similar to Section 2.3, it is possible to add two lines to the extended Rybnikov

arrangements and obtain a combinatorics with a trivial automorphism group. As non-ordered arrange-

ments, there will be no homeomorphism between their complements.

One can generalize the previous construction as follows. Let A be an arrangement, and A be its

complex conjugate. We denote by A+ (resp. A−) the generic glued arrangement of A with itself (resp.

A).

Theorem 3.5. If (A, ξ, γ) is a triangular inner-cyclic arrangement such that I(A, ξ, γ) is not real,

then there is no order-preserving homeomorphism between M(A+) and M(A−).

If, in addition, the automorphism group of C(A) is trivial, then, as non-ordered arrangements, there

is no homeomorphism between the complements of A+ and A−.

As announced in the introduction of this section, the previous Theorem provides a solution to Falk

and Randell Problem 1.2 in [36].

4. Configurations of points & topology of their dual arrangements

The results presented in this section provide a positive answer to Question 2.7. To reach this goal,

we developed a diagrammatic version of the I-invariant in the particular case of complexi�ed real

arrangements [48]. The Zariski pairs obtained here are the �rst ones with rational coe�cients, but

also whose topologies are distinguished without computer assistance. Furthermore, the connected

components of their moduli spaces can be geometrically characterized. To our knowledge, that was

also the �rst time that such a phenomenon was observed.

12The gluing performed by Rybnikov is slightly di�erent from ours. Indeed, he glued the two MacLane arrangements

along three concurrent lines, while we are gluing the extended MacLane arrangements along three lines in generic position.

In particular, this implies that Rybnikov arrangements are not subarrangements of the extended Rybnikov ones.
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4.1. Con�gurations of real points.

For P,Q points in RP2, we denote by (P,Q) the line passing through P and Q.

De�nition 4.1. A (t,m)-con�guration K is the data (V,S,L, pl) composed of two �nite sets of points

V = {V1, . . . , Vt} and S = {S1, . . . , Sn} of RP2, the �nite set of lines L = {(S, V ) | S ∈ S, V ∈ V} in

RP2 and a map pl : V ⊔ S → Z/mZ with V = pl−1(0), such that:

(K1) for any Vi, Vj ∈ V: S ∩ (Vi, Vj) = ∅,
(K2) for any line L ∈ L:

∑
S∈L∩S

pl(S) = 0.

The points in V (resp. in S) are called the vertices (resp. surrounding-points) of K. The map pl is

called the m-plumbing of the con�guration.

A (t,m)-con�guration K = (V,S,L,pl) is called planar if the projective subspace generated by

the vertices V is the whole RP2, i.e. there exists three non-collinear points in V. It is uniform if its

plumbing map pl is constant on S, i.e. there exists an element ζ ∈ Z/mZ such that pl(S) = {ζ}. Note
that any (t, 2)-con�guration is necessarily uniform.

Example 4.2. Examples of (3, 2), (3,m) and (4, 2)-con�gurations are given in Figure (3). Remark

that the dashed lines in the �gures are not elements of L, but they take an important role in our

setting, as we show in Section 4.3.

In a similar manner as for arrangement, one can de�ne the combinatorics of a (t,m)-con�guration

using non-trivial collinearity between points.

De�nition 4.3. The combinatorics of a (t,m)-con�guration K = (V,S,L,pl) is the collection of all

triples of collinear points in V ⊔ S.

To simplify the notation and to �t with the one of arrangements, if k ≥ 4 di�erent points P1, . . . , Pk in

V⊔S are collinear, we write the set {P1, . . . , Pk} instead of all the triples contained in {P1, . . . , Pk}. We

say that two (t,m)-con�gurations K1 = (V1,S1,L1,pl1) and K2 = (V2,S2,L2,pl2) are combinatorially

equivalent if there exists a one-to-one correspondence between the sets V1 ⊔ S1 and V2 ⊔ S2 respecting

collinearity relations.

Example 4.4. The combinatorics of the (3, 2)-con�guration of Figure (3)-(A) is given by{
{V1, S1, S4}, {V1, S2, S3}, {V2, S1, S3}, {V2, S2, S4}, {V3, S1, S2}, {V3, S3, S4}

}
.

Remark 4.5. The combinatorics of a (t,m)-con�guration is not invariant by isotopy. It is possible to

create an extra alignment of points during a deformation, see Section 4.5.

De�nition 4.6. Let K = (V,S,L, pl) be a (t,m)-con�guration, and let C(K) be the combinatorics of

K.

• An automorphism of C(K) is a permutation ϕ of the set V ⊔S which preserves C(K). The group

of such permutations is called the automorphism group of C(K) and is denoted by Aut(C(K)).

• An automorphism of C(K) is stabilizing if ϕ(V) = V (equivalently, if ϕ(S) = S). The subgroup
of stabilizing automorphisms is denoted by AutStab(C(K)).

• The con�guration K is stable if Aut(C(K)) = AutStab(C(K)).

Example 4.7. The (3, 2)-con�guration pictured in Figure (3) (A) is stable, while the Pappus (3,m)-

con�guration in Figure (3) (D) is not.
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•V1 • V2

•
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•
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•
S4

(A) Uniform (3, 2)-con�guration.

•
V1

•
V2

•
V3

•
S1

•
S2

•
S3

•
S4

•
S5

•
S6

pl : (S1, · · · , S6) → (ζ,−ζ, ζ,−ζ, ζ,−ζ)

(B) Non-uniform, non-planar

(3,m)-con�guration (ζ ∈ Z/mZ).

•
S6

•
V1

• V2

•V3

•
V4

•
S1

•
S2•

S3

•
S4

•
S5

(C) Uniform (4, 2)-con�guration.

•V1

•
V2

•V3

•
S1

•
S2•

S3

•
S4

•
S5

•
S6

pl : (S1, . . . , S6) → (ζ,−ζ, ζ,−ζ,−ζ, ζ)

(D) Pappus (3,m)-con�guration (ζ ∈ Z/mZ).

Figure 3. Examples of (t,m)-con�gurations

4.2. Dual arrangements.

Consider ŘP2
the dual projective space form by the lines of RP2. It is naturally isomorphic to the

set of R-linear forms in R3 modulo non-zero scalars. This duality between RP2 and ŘP2
respects the

incidence relations, i.e. P ∈ ℓ if and only if ℓ∗ ∈ P ∗. Note that, for any point P and any line ℓ, we

have (P ∗)∗ = P and (ℓ∗)∗ = ℓ. To simplify the notation, if P is a point of RP2, we denoted by P • the

complex line of CP2 de�ned by P ∗ ⊗ C. For any set of points P in RP2, we denote be AP the dual

arrangement de�ned by {P • | ∀P ∈ P}.

De�nition 4.8. Let K = (V,S,L,pl) be a (t,m)-con�guration.

(1) The dual arrangement associated to K is the line arrangement AV⊔S .

(2) The dual character of the plumbing pl is a torsion character ξpl of AK which assigns 1 to any

line of AV and exp
(
2πipl(S)/m

)
to S• ∈ AS .

Remark 4.9. By construction, the dual arrangement AK of any (t,m)-con�guration K is a complexi�ed

real arrangement.
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Proposition 4.10. A quadruple K = (V,S,L,pl) is a planar (3,m)-con�guration if and only if

(AK, ξpl, γ) is a triangular inner-cyclic triple, where γ is a generator of γ ∈ H1(Γ(AV)).

In other words, (3,m)-con�gurations are dual of triangular inner-cyclic triples.

Idea of the proof. The arrangement AK and the character ξpl are the dual of the set of points V ⊔ S
and of the map pl respectively. Then Conditions (K1) and (K2) in De�nition 4.1 correspond to

Conditions (ICT1) and (ICT2) in De�nition 2.1 respectively, in the particular case of triangular inner-

cyclic triple. □

4.3. The chamber weight of con�gurations.

Proposition 4.10 gives a combinatorial equivalence between planar (3,m)-con�gurations and trian-

gular inner-cyclic arrangements. We aim to pursue this analogy. To reach this goal, we introduce the

chamber weight of a (3,m)-con�guration, which is the dual version of the I-invariant.

Let K = (V,S,L, pl) be a planar (3,m)-con�guration. The lines (V1, V2), (V2, V3) and (V3, V1) divide

RP2 in 4 chambers, noted ch1, . . . , ch4. For any chamber chi, we de�ne the value

τi(K) =
∑

S∈S∩chi

pl(S) ∈ Z/mZ.

Proposition 4.11. The value τi(K) is independent of i, i.e. τi(K) = τj(K) for all i, j ∈ {1, 2, 3, 4}.
Moreover, it takes values over

{
[0],

[
m
2

]}
⊂ Z/mZ if m is even, and it is zero if m is odd.

De�nition 4.12. The chamber weight of K is

τ(K) =
∑

S∈S∩chi

pl(S) ∈ Z/mZ.

Remark 4.13. In the case of a (3, 2)-con�guration, τ(K) is the parity of the number of points of S
contained in a single chamber chi.

Example 4.14. In Figure (3)�(A), we have one point Si in each chamber chi. Since the con�guration

is uniform and pl(S) ⊂ Z/2Z \ {0}, then the chamber weight is

τ(K) = pl(Si) = 1.

Theorem 4.15. Let K1 and K2 be two planar (3,m)-con�gurations. Assume that there exists a home-

omorphism between M(AK1) and M(AK2) which respects �x orders on the associated arrangements.

One has that:

τ(K1) = τ(K2).

Idea of the proof. By Proposition 4.10, we have an equivalence between a (3,m)-con�guration K =

(V,S,L,pl) and the triangular inner-cyclic triple (AK, ξpl, γ). Since AK is a complexi�ed real arrange-

ment, then its braided wiring diagram can be given by the real picture. In particular, this implies that

any intermediate braid bi in the description (WD) is trivial.

Let denote by D1, D2 and D3 the three lines of AV , and assume that D1 is the line at in�nity. So

that we can consider the a�ne picture of AK \ {D1}. By Theorem 2.9, one has that

I(AK, ξpl, γ) = ξpl(ulkD3 B(P→D3) − ulkD2 B(P→D2)),

where P = D2∩D3. It appears that ulkD3 B(P→D3)−ulkD2 B(P→D2) is the sum of the meridians of the

lines D ∈ AS such that the slope of their a�ne images in RP2 \D1 is upper and lower bounded by the

slopes of D2 and D3, and the intersection D ∩D2 is contained in the half plan {(x, y) ∈ R2 | x < xP },
where xP is the �rst coordinate of P in R2.
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From the con�guration's perspective, the two conditions above are similar. Let ci be one of the

two cones in RP2 formed by (Vi, Vj) and (Vi, Vk), with {i, j, k} = {1, 2, 3}. The �rst and the second

conditions are equivalent to D∗ ∈ c1 and D∗ ∈ c3, respectively. This corresponds to the fact that the

dual point of D is in a �xed chamber τi, see Figure (4).

From the de�nition of the chamber weight, we obtain that:

I(AK, ξpl, γ) = exp(
−2iπ

m
τ(K)).

The result follows from Theorem 2.3. □

• •

•

V1 V3

V2

chi

c1c3

Figure 4. Intersection of two cones.

The preceding theorem can be enhanced by eliminating the ordered assumption. It is achieved if

the value of the chamber weight is invariant under any automorphism of the combinatorics. While we

might assume that the only automorphism of the combinatorics is the identity, it su�ces to rely on a

milder assumption: the stability of the con�guration.

Corollary 4.16. Let K be a stable planar uniform (3,m)-con�guration, and consider AK as a non-

ordered arrangement. The chamber weight τ(K) is an invariant of the homeomorphism type of M(AK).

4.4. A Zariski pair of complexi�ed real arrangements.

We construct four (3, 2)-con�gurations K1,1,K1,−1,K−1,1 and K−1,−1 which are combinatorially

equivalent and verify that τ(Cα,β) ̸= τ(Cα′,β′) if αβ ̸= α′β′. Using Theorem 4.15 or Corollary 4.16, we

conclude that the associated dual arrangements have non-homeomorphic complements.

For any α, β ∈ {−1, 1}, let Kα,β = (V,Sα,β,Lα,β, pl) be four uniform (3,2)-con�gurations de�ned by

the following data

V = {V1, V2, V3}, Sα,β = {S1, . . . , S4} ⊔ {Sα
5 , S

α
6 , S

α
7 } ⊔ {Sβ

8 , S
β
9 , S

β
10},

where

V1 = (0 : 1 : 0), V2 = (1 : 0 : 0), V3 = (0 : 0 : 1),

S1 = (1 : 1 : 1), S2 = (4 : 4 : 1), S3 = (−1 : 8 : 2), S4 = (8 : −1 : 2),

Sα
5 = (−1 : 8 : 4α), Sα

6 = (−1 : 4α : 2), Sα
7 = (−α : 4 : 4),

Sβ
8 = (8 : −1 : 4β), Sβ

9 = (4β : −1 : 2), Sβ
10 = (4 : −β : 4).

Note that, for any α, β ∈ {−1, 1}, each line of Lα,β contains exactly two surrounding-points. This

is compatible with the 2-plumbing

pl(V ) = 0 ∈ Z/2Z, ∀V ∈ V and pl(S) = 1 ∈ Z/2Z, ∀S ∈ Sα,β.

These four (3, 2)-con�gurations are plotted13 in Figure (5).

13To have clearer pictures, they are not plotted to scale but up to deformation respecting the combinatorics.
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(A) The (3, 2)-con�guration K1,1.
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(B) The (3, 2)-con�guration K1,−1.
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(C) The (3, 2)-con�guration K−1,1.
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•
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•

(D) The (3, 2)-con�guration K−1,−1.
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•
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•V2

•
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•

Figure 5. The (3, 2)-con�gurations Kα,β . In black, the common points V, S and their

lines. In color, the points and lines corresponding to each con�guration for α = 1,

α = −1, β = 1, β = −1.

Proposition 4.17. For any α, β ∈ {−1, 1}, the con�guration Kα,β is stable and has the following

combinatorics
{
V1, S1, S

β
10

}
,
{
V1, S2, S4

}
,
{
V1, S3, S

α
6

}
,
{
V1, S

α
5 , S

α
7

}
,
{
V1, S

β
8 , S

β
9

}{
V2, S1, S

α
7

}
,
{
V2, S2, S3

}
,
{
V2, S4, S

β
9

}
,
{
V2, S

α
5 , S

α
6

}
,
{
V2, S

β
8 , S

β
10

}{
V3, S1, S2

}
,
{
V3, S3, S

α
5

}
,
{
V3, S4, S

β
8

}
,
{
V3, S

α
6 , S

α
7

}
,
{
V3, S

β
9 , S

β
10

}
 .

For any α, β ∈ {−1, 1}, we denote by Aα,β the dual arrangement of the (3, 2)-con�guration Kα,β .

Recall that, from Proposition 4.17, A1,1, A1,−1, A−1,1, A−1,−1 are combinatorially equivalent.
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Theorem 4.18. Let α, α′, β, β′ ∈ {−1, 1} be such that αβ ̸= α′β′ and consider the arrangements

Aα,β and Aα′,β′ as non-ordered arrangements. There is no homeomorphism between M(Aα,β) and

M(Aα′,β′).

Proof. According to Corollary 4.16, it is su�cient to determine the parity of the number of surrounding-

points in a chamber of the associated (3, 2)-con�guration. If we choose the bounded chambers in

Figure (6), then one has:

τ(K1,1) = [2] = [0], τ(K1,−1) = [3] = [1], τ(K−1,1) = [3] = [1] and τ(K−1,−1) = [4] = [0]. □

Corollary 4.19. For any α, β, α′, β′ ∈ {−1, 1} such that αβ ̸= α′β′, the non-ordered arrangements

Aα,β and Aα′,β′ form a Zariski pair.

It is worth pointing out again that the above result provides the �rst example of Zariski pair of line

arrangements de�ned by rational coe�cients and for which computer assistance isn't needed.

4.5. A degeneration with 2 points of multiplicity 5.

The moduli space of the previous examples is 3-dimensional. Indeed, if we �x by the action of

PGL3(C), the points V1, V2, V3 and S1, then the points S2, S3 and S4 have each 1 degree of freedom.

It appears that moving the points S3 and S4 to speci�c limit cases, we can create two alignments of

5 points: V1, S1, S3, S
α
6 , S

β
10 in a �rst time, and V2, S1, S4, S

α
7 , S

β
9 in a second one. The con�gurations

then obtained are pictured in Figure (6), for (α, β) = (1, 1) and (α, β) = (1,−1). They are de�ned by

K2
α,β = (V2,S2

α,β,L2
α,β, pl), where V2 = V = {V1, V2, V3}, with

V1 = (0 : 1 : 0), V2 = (1 : 0 : 0), V3 = (0 : 0 : 1),

and S2
α,β = {S1, S2, S3, S4} ⊔ {Sα

5 , S
α
6 , S

α
7 } ⊔

{
Sβ
8 , S

β
9 , S

β
10

}
with

S1 = (1 : 1 : 1), S2 = (4 : 4 : 1), S3 = (1 : 4 : 1), S4 = (4 : 1 : 1),

Sα
5 = (1 : 4 : 2α), Sα

6 = (1 : 2α : 1), Sα
7 = (α : 2 : 2),

Sβ
8 = (4 : 1 : 2β), Sβ

9 = (2β : 1 : 1), Sβ
10 = (2 : β : 2).

Remark 4.20. It is possible to move only one of the points S3 and S4 and create a unique alignment

of 5 points. This construction is done in [48, Section 3.1]. The exponent 2 in the notation noti�es the

presence of the 2 alignments of 5 points. We decided to present this deformation due to additional

properties on their fundamental groups that we explore in Section 5.1.

Proposition 4.21. For any α, β ∈ {−1, 1}, the (3, 2)-con�guration K2
α,β is stable and has the following

combinatorics
{
V1, S1, S3, S

α
6 , S

β
10

}
,
{
V1, S2, S4

}
,
{
V1, S

α
5 , S

α
7

}
,
{
V1, S

β
8 , S

β
9

}{
V2, S1, S4, S

α
7 , S

β
9

}
,
{
V2, S2, S3

}
,
{
V2, S

α
5 , S

α
6

}
,
{
V2, S

β
8 , S

β
10

}{
V3, S1, S2

}
,
{
V3, S3, S

α
5

}
,
{
V3, S4, S

β
8

}
,
{
V3, S

α
6 , S

α
7

}
,
{
V3, S

β
9 , S

β
10

}
 .

We denote by A2
α,β the respective dual arrangements of K2

α,β . By a computation of the chamber

weight τ for these four con�gurations, we obtain the following theorem.

Theorem 4.22. Let α, β, α′, β′ ∈ {−1, 1} be such that αβ ̸= α′β′, and consider the arrangements A2
α,β

and A2
α′,β′ as non-ordered. There is no homeomorphism between M(A2

α,β) and M(A2
α′,β′).

As a consequence, A2
α,β and A2

α′,β′ form a Zariski pair.
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Figure 6. The (3, 2)-con�gurations K2
1,1 and K2

1,−1, as well as the conic joining the six

points S3, S4, S
+
5 , S

+
7 , S

+
8 , S

+
10. In black, the common points V2, S2 and their lines. In

color, the points and lines corresponding to each con�guration for α = 1, β = 1, β = −1.

4.6. Moduli spaces & geometrical characterizations.

In this section, we are interested in the moduli space of realizations of the Zariski pair given by

A2
α,β , presented in Section 4.5. In particular, in the spirit of Zariski in [88, 89, 90] (singular points on

a conic) or of Artal in [5] (collinear points), geometric characterizations of the connected components

of the moduli space are obtained.

4.6.1. Moduli space of A2
α,β.

To describe an element of the moduli space, which is a class of arrangements projectively equivalent,

one can give a representative of this class where four lines in generic position are �xed using the action

of PGL3(C). In the following theorem, the �xed lines are ℓ1, ℓ2, ℓ3 and ℓ4. To lighten the notation,

the moduli space M(C(A2
α,β)) is denoted by M2, since it is independent of α and β.

Theorem 4.23. The moduli space M2 of A2
α,β is formed by the arrangements composed of the lines

ℓ1 : y = 0, ℓ2 : x = 0, ℓ3 : z = 0, ℓ4 : x+ y + z = 0,

ℓ5 : γx+ γy + z = 0, ℓ6 : x+ γy + z = 0, ℓ7 : γx+ y + z = 0,

ℓ8 : κ
−1
1 x+ κ1y + z = 0, ℓ9 : x+ κ1y + z = 0, ℓ10 : κ

−1
1 x+ y + z = 0,

ℓ11 : κ2x+ κ−1
2 y + z = 0, ℓ12 : κ2x+ y + z = 0, ℓ13 : x+ κ−1

2 y + z = 0.

where κ21 = κ22 = γ ∈ C∗ satisfying κ31, κ
3
2 ̸= 1, κ1κ2 ̸= 1 and:

(1) if κ1 = κ2:

• 2κ21 + κ1 + 1 ̸= 0,

• 2κ21 + 2κ1 + 1 ̸= 0,

• κ1 ̸= −1/2,

• κ31 + 3κ21 + 2κ1 + 1 ̸= 0,

• κ31 + 2κ21 + κ1 + 1 ̸= 0;

(2) if κ1 = −κ2:
• κ31 + κ21 + 1 ̸= 0,

• κ31 − κ21 − 1 ̸= 0,

• 2κ21 + 1 ̸= 0,

• κ31 + κ1 − 1 ̸= 0,

• κ31 + κ1 + 1 ̸= 0.

Corollary 4.24. There is no arithmetic Zariski pair with the combinatorics C(A2
α,β).
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Even if there are no Galois-conjugated realizations, we observe a Rybnikov-like construction. As

explained in Section 3.2, Rybnikov arrangements are constructed by gluing two MacLane arrangements.

We then obtain four arrangements R±,± = ML± ∪ML± and R±,∓ = ML± ∪ML∓, where ML±

are the MacLane arrangements [56]. The complex conjugation acts naturally on the equations of these

arrangements. When this action is applied on all the lines it sends R±,± and R±,∓ on R∓,∓ and R∓,±,

respectively. Nevertheless, one can also consider a partial action of the complex conjugation on the

second copy of the MacLane arrangements. This action sends R±,± and R±,∓ on R±,∓ and R±,±,

respectively. One quali�es such arrangements semi-arithmetic pair.

Using Theorem 4.23 for γ = 2, we can show that there exist arrangements in M2 which form such

a semi-arithmetic pair. Indeed, if γ = 2, then κ21 = κ22 = 2 and so the arrangements associated have

equations de�ned over Q(
√
2). More precisely, when κ1 =

√
2, one can consider the two arrangements

A√
2 and A−

√
2 of M2 de�ned by the following equations:

ℓ1 : y = 0, ℓ2 : x = 0, ℓ3 : z = 0, ℓ4 : x+ y + z = 0,

ℓ5 : 2x+ 2y + z = 0, ℓ6 : x+ 2y + z = 0, ℓ7 : 2x+ y + z = 0,

ℓ8 : x+ 2y +
√
2z = 0, ℓ9 : x+

√
2y + 1 = 0, ℓ10 :

√
2x+ 2y + 2z = 0,

ℓ11 : 2x+ y ±
√
2z = 0, ℓ12 : ±

√
2x+ y + z = 0, ℓ13 : 2x±

√
2y + 2z = 0.

Consider the Galois action of Q(
√
2). When it is applied only on the line ℓ11, ℓ12 and ℓ13, it sends A√

2

on A−
√
2, and we obtain that these arrangements form a semi-arithmetic pair.

Remark 4.25. The arrangements Aα,β de�ned in Section 4.4 also admit a similar Rybnikov-like con-

struction, and so, a semi-arithmetic structure.

4.6.2. Topology of the moduli space.

From Theorem 4.23, we can obtain additional results on the topology of the moduli space. In the

�rst place, we compute the number of connected components of the space.

Proposition 4.26. The moduli space M2 is formed by two connected components M0
2 and M1

2. The

�rst is characterized by the relation κ1 = κ2, and the second by κ1 = −κ2.

The previous result implies that A2
1,1 and A2

−1,−1 (resp. A2
−1,1 and A2

1,−1) are path-connected inM2,

so by Randell Isotopy Theorem [70] they have the same topology. In addition, these two connected

components are geometrically characterized. Let us denote by Pi1,...,ik the singular point de�ned as

the intersection of the lines ℓi1 , . . . , ℓik .

Proposition 4.27. For any arrangement A ∈ M2, the following are equivalent:

(1) A ∈ M0
2.

(2) The six lines ℓ6, ℓ7, ℓ8, ℓ10, ℓ11, ℓ13 are tangent to a smooth conic.

(3) The six triple points P1,8,10, P1,11,12, P2,8,9, P2,11,12, P3,9,10 and P3,12,13 are contained in a

smooth conic.

(4) The three triple points P1,11,12, P2,8,9 and P3,4,5 are collinear.

Remark 4.28. It can be checked that the characterizations given in Proposition 4.27 are not the only

one of M0
2.
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ℓ1

ℓ2

ℓ3

ℓ5

ℓ6

ℓ7

ℓ8 ℓ9

ℓ10

ℓ11

ℓ12

ℓ13

(A) A representative of M0
2 and the conics.

ℓ1

ℓ2

ℓ3

ℓ5

ℓ6

ℓ7

ℓ8 ℓ9

ℓ10

ℓ11

ℓ12

ℓ13

(B) A representative of M1
2.

Figure 7. Real representatives of the two connected components of M2, considering

ℓ4 as the line at the in�nity.

5. Fundamental group of line arrangements

The fundamental group of the complement is a classical topological invariant of line arrangements.

It has been known since Rybnikov [71, 72, 8] that it is not combinatorially determined. In this section,

we present a complexi�ed real pair of arrangements with non-isomorphic fundamental groups. They

have been distinguished using the torsion of their Lower Central Series quotients. This solves at once

the Falk and Randell Problem 1.3 in [36], and the Question 8.7 of Suciu in [78]:

Problem (Falk and Randell [36]). Prove that the underlying matroid of a complexi�ed arrangement

determines the homotopy type, or �nd a counter-example.

Question (Suciu [78]). Let G(A) be an arrangement group. Is the torsion in grkG(A) combinatorially

determined?

Then, on the other side of the spectrum, we construct examples of combinatorially and homotopy-

equivalent arrangements with non-homeomorphic complements. This result �rst appears in [43] as

the existence of homotopy-equivalent Zariski pairs. It is improved to non-homeomorphic complements

in [45] using the multiplicativity theorem of the loop-linking number. This result completes the works

of Falk [32], and Jiang and Yau [51, 53] on the relation between the homotopy of M(A) and the

combinatorics of the arrangement.

5.1. Complexi�ed real arrangements & Fundamental group.

As a �rst step in the study of the fundamental group of complexi�ed real arrangements, we need

to compute G(A) = π1(M(A)). In such case, Randell [68, 69] gives an algorithm to compute a �nite

presentation of G(A) from the real picture of the arrangement, see also [73]. This has been generalized

by Arvola in [14] to any complex line arrangement.

5.1.1. Computation of the fundamental group.

Throughout this section, we assume that A = {ℓ0, . . . , ℓn} is a complexi�ed real arrangement14. Let

us recall how to compute the presentation of G(A) given by Randell. We assume that ℓ0 is the line

14The choice to start the indices at 0 and not 1 as above allows to take ℓ0 as the line at in�nity and consider the

a�ne part of A and to have line labeled from 1 to n.
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z = 0 and is considered as the line at in�nity. Let AR = A∩R2 be the real picture of A. By an abuse

of notation, the a�ne real trace of ℓi ∈ A is also denoted by ℓi. Last, we assume that no line of A
has a de�ning equation of the form x = α. Assign to each line ℓi of AR a meridian mi contained in a

complex line de�ned by x = β with β ∈ R, such that the �rst coordinate of each singular point of A
is strictly greater than β.

Reading the picture AR from the negative part of the �rst coordinate of R2 to its positive part15,

we assign to each smooth part in AR, i.e. the segments bounded by the singularities, a conjugate of

the meridian of the associated line. This process is described in Figure (8).

ωℓ

ωℓ−1

...

ω2

ω1

ω1

ω1 ∗ ω2

...

(ω1 · · ·ωℓ−2) ∗ ωℓ−1 ≡ ωωℓ
ℓ−1

(ω1 · · ·ωℓ−1) ∗ ωℓ ≡ ωℓ

Figure 8. Assignment of meridians at each singularity.

Finally, to each singular point P ∈ Sing(AR) with input elements ω1, . . . , ωℓ associated to the left-

hand segments (as in Figure (8)), we assign the set of m(P )− 1 relations.

RP = {ω1 · · ·ωℓ = ωσ(1) · · ·ωσ(ℓ) | σ a cyclic permutation of ℓ elements}

Remark 5.1. This method works even if there are vertical lines; by a small rotation, e.g. counterclock-

wise, one can assume that the vertical line is the �rst one. Examples for double and triple points are

given in Figure (9).

ω1

ω1

ω2 ω2

ω3

ω1ω2

ω1
ω1 ∗ ω2 ≡ ωω3

2

(ω1ω2) ∗ ω3 ≡ ω3

Figure 9. Assignments of meridians with vertical lines.

Theorem 5.2 (Randell [68, 69]). Let A be a complexi�ed real arrangement. The fundamental group

of the complement M(A) admits the following presentation:

G(A) ≃

〈
m1, . . . ,mn

∣∣∣∣∣∣
⋃

P∈Sing(AR)

RP

〉
.

5.1.2. Lower central series quotients.

The lower central series (LCS) of a group G is de�ned as a descending sequence of normal subgroups

G = γ1(G) ⊵ γ2(G) ⊵ · · · ⊵ γk(G) ⊵ · · · ,

such that each γk+1(G) is the commutator subgroup [γk(G), G] of G. The kth lower central quotient

of this series is de�ned as the group grk(G) = γk(G)/γk+1(G). Note that grk(G) is Abelian since

[γk(G), γk(G)] ≤ γk+1(G). In addition, if G is �nitely generated, then so grk(G) is. Thus, grk(G) is

fully determined by its rank, noted ϕk(G), and its torsion.

15This direction of reading is taken from left to right in the di�erent pictures of this manuscript.
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Remark 5.3. If G is a �nitely presented group, then the GAP package nq can be used to compute the

lower central series quotients of G.

In the case of a group G(A) associated to a line arrangement A, the possible dependency on the

combinatorics of the invariants of the LCS is a classical research topic. In [71, 72], Rybnikov gives a

sketch of a proof of the combinatorial determination of the second nilpotent group G(A)/γ3(G(A)),

lately formally proved by Matei and Suciu [58]. Using Sullivan 1-minimal models, Falk proves that

also ϕk(G(A)) is combinatorially determined [31]. He also obtains with Randell [34], in the particular

case of �ber-type arrangements, the LCS formula:∏
k≥1

(1− tk)ϕk(G(A)) = P (M(A),−t),

where P (M(A), t) is the Poincaré polynomial of the complement (see [67, Sec. 2]), which is known

to be combinatorial. Nevertheless, there exist examples of arrangements for which the LCS formula

fails [36, 78], and no general explicit formula is known for ϕk(G(A)), even for ϕ3(G(A)).

5.1.3. Fundamental groups of complexi�ed real arrangements are not combinatorially determined.

Let A√
2 and A−

√
2 be the two arrangements de�ned in Section 4.6.1. From Theorem 4.22, we

know that their complements M(A√
2) and M(A−

√
2) are not isomorphic. Consider G(A√

2) and

G(A−
√
2) the fundamental groups of M(A√

2) and M(A−
√
2), respectively. Using the algorithm given

in Section 5.1.1 and Figure (7), we can compute that in G(A√
2) and G(A−

√
2), the torsion of the 4th

and 5th LCS quotients di�ers. Indeed, using the GAP code described in the Appendix of [13], we can

compute the primary decompositions of the �ve �rst lower central series quotients and then obtain the

following theorem.

Theorem 5.4. The �rst LCS quotients of G(A√
2) and G(A−

√
2) have the following primary decom-

positions:

(1) for k ≤ 3, we have grk(G(A√
2)) ≃ grk(G(A−

√
2)) ≃ Zϕk with (ϕk)

3
k=1 = (12, 23, 76),

(2) gr4(G(A√
2)) ≃ Zϕ4 ⊕ Z2 and gr4(G(A−

√
2)) ≃ Zϕ4, with ϕ4 = 211,

(3) gr5(G(A√
2)) ≃ Zϕ5 ⊕ Z2 and gr5(G(A−

√
2)) ≃ Zϕ5, with ϕ5 = 660.

Remark 5.5. We can show that the commutator of meridians [[[m1,m5],m2],m3] is a representative of

the 2-torsion element in gr4(G(A√
2)) (using GAP), while it corresponds to the identity in gr4(G(A−

√
2)).

Corollary 5.6. The torsion in the quotients of the LCS of G(A) is not determined by the combinatorics

C(A).

Remark 5.7. It can be veri�ed that the LCS formula fails for these arrangements.

Corollary 5.8. The fundamental group of the complement of a complexi�ed real arrangement A is not

determined by its combinatorics C(A).

Remark 5.9. Theorem 5.4 implies in particular that A√
2 and A−

√
2 have non-equivalent braid mon-

odromies.

5.2. Homotopy equivalent Zariski pairs.

In this section, we explore the other extremity of the range of Zariski pairs. Previously, we exhib-

ited a Zariski pair with non-isomorphic fundamental groups. Here, we give examples of π1-equivalent

Zariski pairs [43], but also Zariski pairs with homotopically-equivalent and non-homeomorphic com-

plements [43, 45]. These results take their inspiration from the intersection of the works of Ryb-

nikov [71, 71], and Oka and Sakamoto [65]: the former for the construction of Zariski pairs using

gluing of arrangements, the latter for the control of the fundamental groups.
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5.2.1. Augmented arrangement and homotopy of the complement.

Let A = {ℓ1, . . . , ℓn} be an ordered arrangement, and let ℓ be a �xed line of A. An augmented

arrangement of A along ℓ is an ordered arrangement A+
ℓ = {ℓ1, . . . , ℓn, ℓn+1, ℓn+2} such that:

(A1) the lines ℓ, ℓn+1 and ℓn+2 intersect a triple point of A+
ℓ ,

(A2) the arrangements {ℓn+1, ℓn+2} and A \ {ℓ} intersect generically, i.e. one has

#Z({ℓn+1, ℓn+2}) ∩ Z(A \ {ℓ}) = 2n− 2.

This construction permits to keep a control on the homotopy of the complement of the augmented

arrangement, as stated in the following theorem.

Theorem 5.10 ([65, 85]). Let A be an ordered arrangement and ℓ, ℓ′ be two lines of A. The arrange-

ments A+
ℓ and A+

ℓ′ are π1-equivalent. More precisely:

π1(M(A+
ℓ )) ≃ π1(M(A))× F2 ≃ π1(M(A+

ℓ′ )).

Furthermore, if A is a complexi�ed real arrangement, then the complement of A+
ℓ and A+

ℓ′ are homotopy-

equivalent.

The �rst part of the previous theorem is due to Oka and Sakamoto in [65]. Notice that this can also

be obtained from [33] and [50]. Furthermore, since an augmented arrangement A+
ℓ is nothing else than

a 2-generic section of the parallel connection of the arrangement A with a pencil of 3 lines (see [33, 26]

for more details about parallel connections), then the second part of the theorem is given by Williams

in [85].

5.2.2. Homotopy-equivalent and π1-equivalent Zariski pairs.

Let A1 = {ℓ11, . . . , ℓ1n} and A2 = {ℓ21, . . . , ℓ2m} be two ordered arrangements intersecting generically.

We denote the ordered arrangement16 A1 ⊔ A2 by A1,2 where the order is given by:

(ℓ11, . . . , ℓ
1
n, ℓ

2
1, . . . , ℓ

2
m) 7−→ (1, . . . , n+m).

Remark 5.11. The arrangements A1,2 and A2,1 are not the same ordered arrangement even if they are

the same non-ordered arrangement.

To prove our main result, let us recall the notion of connected arrangement introduced by Fan [37].

Let Sing≥3(A) and Sing2(A) be the subsets of Sing(A) form respectively by the multiple points and the

double points ofA. An arrangementA is connected if the setA≥3 = Z(A)\Sing2(A) is path-connected.

Note that this property is combinatorial.

Theorem 5.12. Let A1 = {ℓ11, . . . , ℓ1n} and A2 = {ℓ21, . . . , ℓ2n} be a Zariski pair, ϕ be the ordered

isomorphism between their combinatorics, i.e. ϕ(ℓ1i ) = ℓ2i . We �x k ∈ {1, . . . , n} and denote by ℓj the

line ℓjk, for j ∈ {1, 2}. We assume that:

(C1) The arrangements A1 and A2 are connected,

(C2) They intersect generically,

(C3) For j ∈ {1, 2}, any line ℓ of Aj contains at least two multiple points, i.e. |ℓ∩ Sing≥3(Aj)| ≥ 2.

The arrangements (A1,2)
+
ℓ1

and (A2,1)
+
ℓ2

verify the following properties:

(P1) They have isomorphic intersection lattices,

(P2) There is no homeomorphism of CP2 sending (A1,2)
+
ℓ1

on (A2,1)
+
ℓ2
,

16This construction of an ordered union of arrangements is similar to the one make in Section 3.1, the only di�erence

is the genericity of the intersection.
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(P3) Their complements are π1-equivalent; furthermore, if A1 and A2 are real-complexi�ed arrange-

ments then the complements are homotopy-equivalent.

Remark 5.13. The conditions (C1) and (C3) are combinatorial; thus if they are veri�ed by A1 then

they are also veri�ed by A2; and, up to the action of PGL3(C), condition (C2) is always true.

Proof.

• (P1): The application ϕ+ : (A1,2)
+
ℓ1

→ (A2,1)
+
ℓ2

de�ned below is an (ordered) isomorphism between

the intersection lattices.

ϕ+ :


ℓ1i 7−→ ℓ2i
ℓ2i 7−→ ℓ1i
ℓ2n+1 7−→ ℓ2n+1

ℓ2n+2 7−→ ℓ2n+2

• (P2): We assume that there exists a homeomorphism ψ+ of CP2 sending (A1,2)
+
ℓ1
on (A2,1)

+
ℓ2
. Con-

dition (C3) implies that ψ+({ℓ2n+1, ℓ2n+2}) = {ℓ2n+1, ℓ2n+2}. Thus, ψ+ is also a homeomorphism

between A1,2 and A2,1. From Conditions (C1) and (C2), we deduce that ψ+ �xes or exchanges A1

and A2. Finally, due to Condition (C3) and the de�nition of an augmented arrangement, we have that

ψ+(ℓ1) = ℓ2. This implies that ψ+ sends A1 and A2, which is impossible since A1 and A2 form a

Zariski pair.

• (P3): As non-ordered arrangements, A1,2 and A2,1 are the same arrangement. Thus, (A1,2)
+
ℓ1

and

(A2,1)
+
ℓ2

are two augmentations of the same arrangement along di�erent lines. We conclude using

Theorem 5.10. □

The Zariski pairs given in [72, 41] verify Conditions (C1), (C2) and (C3) of Theorem 5.12. Fur-

thermore, the ones given in [7, 48] are complexi�ed real Zariski pairs, and also verify the conditions of

Theorem 5.12. This allows to prove the following corollary.

Corollary 5.14. For a �xed combinatorics, the topology of an arrangement A is determined neither

by the fundamental group nor by the homotopy-type of its complement M(A).

5.2.3. Improvement with non-homeomorphic complements.

Using the multiplicativity Theorem for the I-invariant (Theorem 3.1), one can improve Corol-

lary 5.14 and replace the topology of an arrangement A by the homeomorphism type of its complement

M(A). In Section 3.1, we introduce the notation A1△ϕA2 for the gluing of two arrangements according

to ϕ. In this section, A1△A2 will denote any generic gluing of A1 with A2. Similarly to Remark 5.11,

as non-ordered arrangements A1△A2 and A2△A1 are the same, although they are di�erent ordered

arrangements. In particular, they have isomorphic fundamental groups and equivalent non-ordered

combinatorics.

Let A1 = {ℓ11, . . . , ℓ1n} and A2 = {ℓ21, . . . , ℓ2n} be two combinatorially equivalent arrangements, and

denote by C their combinatorics. Assume that there exist ξ and γ respectively a character on C and a

cycle of Γ(C) such that (A1, ξ, γ) and (A2, ξ, γ) are triangular inner-cyclic triples
17 which verify:

I(A1, ξ, γ) ̸= I(A2, ξ, γ)
±1.

17Let us recall that according to the de�nition given in Section 3.1, the only line-vertices contained by γ are v
ℓ
j
1
, v

ℓ
j
2

and v
ℓ
j
3
.
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Last, assume that the value of the I-invariant is independent of the orders considered on A1 and A2.

In other words, A1 and A2 form a Zariski pair distinguished by the I-invariant. Such arrangements

are given in Section 2.3, and in Section 4.4 for the particular case of complexi�ed real arrangements.

Let �x k ∈ {4, . . . , n}. For j ∈ {1, 2}, we denote by ℓj the line ℓjk. Let A1 = A1△(A2)
+
ℓ2

and

A2 = A2△(A1)
+
ℓ1
. By construction, A1 and A2 are combinatorially equivalent. We denote by Id the

trivial character on (Aj)
+
ℓj
which sends all the meridians on 1. Finally, let µ be the cycle of Aj which

contains as line-vertices only vℓ1 , vℓ2 and vℓ3 . Using the multiplicativity Theorem 3.1, one has:

I(Aj , ξ△ Id, µ) = I(Aj , ξ, γ).

By Theorem 2.3, as non-ordered arrangements A1 and A2 have non-homeomorphism complements.

If A1 and A2 verify Conditions (C1) and (C3), then using the same argument as in the proof of

Theorem 5.12 (P2), we obtain that I(Aj , ξ△ Id, µ) is also independent of the order of the combinatorics.

At the end, one has the following:

Theorem 5.15. The non-ordered arrangements A1 and A2 have the following properties:

(1) They are combinatorially equivalent.

(2) Their complements are non-homeomorphic.

(3) Their complements are π1-equivalent.

(4) If A1 and A2 are complexi�ed real arrangements, then their complements are homotopically

equivalent.

As noticed above, the arrangements are given in Section 2.3, and in Section 4.4 for the particular

case of complexi�ed real arrangements verify all the hypothesis. So one can deduce the following.

Corollary 5.16. For a �xed combinatorics, the homeomorphism type of an arrangement complement

M(A) is determined neither by its fundamental group nor by its homotpy-type.

Corollary 5.17. The I-invariant of an inner-cyclic triple (A, ξ, γ) is not determined by the homotopy

type of the complement M(A).

5.2.4. Explicit examples with less lines.

One of the weakness of the previous construction is the number of lines needed to construct the

examples. The smallest example constructed contains 21 lines, and 25 lines for the complexi�ed real

one. It appears that we decrease these numbers by considering an ordered Zariski pair which is not a

Zariski pair.

Consider the arrangements M± and N± of 11 lines de�ned in Section 2.3. As we noticed in Re-

mark 2.12, there exists a projective transformation that realizes the automorphism of the combinatorics.

It cyclically permutes M+, N+, M− and N−. This implies that they have the same topology and so

they are π1-equivalent. Nevertheless, we proved that they form ordered Zariski pairs, as soon as the

two considered arrangements are not complex conjugated. In Section 2.3, we add a line to reduce the

automorphism group of the combinatorics to the trivial group. It is proven, in [11], that this makes

the fundamental groups non-isomorphic. In this section, we apply a di�erent strategy to reduce the

automorphism group to the trivial one.

By Proposition 2.11, we know that the automorphism group of the combinatorics K11 is generated

by the permutation

σ = (ℓ1, ℓ2)(ℓ4, ℓ6, ℓ8, ℓ10)(ℓ5, ℓ7, ℓ9, ℓ11).
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The permutation σ acts cyclically on ℓ4, ℓ6, ℓ8 and ℓ10. By taking an augmentation of M± and N±,

we can make combinatorially unique one of them, ℓ4 for example. This forces any homeomorphism

between the arrangements to respect the order, and that creates a contradiction.

Theorem 5.18. The arrangements (M±)+ℓ4 and (N±)+ℓ4 verify the following properties:

(1) They are combinatorially equivalent, and their automorphism group if isomorphic to Z/2Z and

permutes the two lines ℓ12 and ℓ13.

(2) They are π1-equivalent with fundamental group isomorphic to π1(M(M±))×F2 ≃ π1(M(N±))×
F2.

(3) As non-ordered arrangements, they have non-homeomorphic complements.

In other words, the arrangements (M±)+ℓ4 and (N±)+ℓ4 form π1-equivalent Zariski pair. Furthermore,

they have only 13 lines.

To construct a smaller homotopy-equivalent Zariski pair, we apply a similar argument as previously

to the example of Artal, Carmona, Cogolludo and Marco [7]. Unfortunately, using a single augmenta-

tion is not enough to �x all the automorphisms of the combinatorics as previously done. This problem

can be avoided by the application of two successive augmentations.

Let a be a root of X2 +X − 1, and consider the arrangements M and N formed by the 10 lines:

M1 : z = 0, ℓ1 : x− y,

M2 : x = 0, ℓ2 : ax− y − az = 0,

M3 : x− z = 0, ℓ3 : ax− y + z = 0,

M4 : x+ (a+ 1)z = 0, ℓ4 : y − z = 0,

M5 : x− (a+ 2)z = 0, ℓ5 : y = 0.

Theorem 5.19 (Remark 2.8 and Theorem 4.19 of [7]). The arrangements M and N form a homotopy-

equivalent ordered Zariski pair.

By [7, Lemmas 2.4 & 2.9], the automorphism group of the combinatorics of M (and N too) is

isomorphic to the subgroup of Σ5 (the symmetric group on 5 elements) generated by:

σ1 = (1, 2, 3, 4, 5) and σ2 = (2, 4, 5, 3).

More precisely, it is the semi-direct product of ⟨σ1⟩ and ⟨σ2⟩.
The action of the generators σ1 and σ2 can be viewed geometrically as an action on the lines Mi

and ℓi which is given by σj ·Mi = Mσj(i) and σj · ℓi = ℓσj(i). The idea is to trivialize this action

by taking augmentations of these arrangements. The subtlety of this case lies in the following fact:

if we combinatorially �x one of the line Mi or ℓi with an augmentation, then there are still some

non-trivial automorphisms acting on Mi and ℓi. So, to trivialize this action, we need to consider two

augmentations. The �rst �xes M1 (and so ℓ1), while the second �xes ℓ5 (and so M5).

Let M+
M1,ℓ5

(resp. N+
M1,ℓ5

) be the arrangement arising from two augmentations of M (resp. N ),

along M1 and ℓ5. Furthermore, we can assume that the four added lines are de�ned by real linear

forms, in such way that M+
M1,ℓ5

and N+
M1,ℓ5

are real-complexi�ed arrangements. For example, we can

consider the arrangements M+
M1,ℓ5

= M∪{D1, D2, D3, D4} and N+
M1,ℓ5

= N ∪{D1, D2, D3, D4}, where

D1 : x+ y + z = 0 and D2 : x+ y + 2z = 0,

D3 : x+ 3y − 5z = 0 and D4 : x− 3y − 5z = 0.

These arrangements are well augmented arrangements of M and N since the lines M1, D1 and D2

(resp. ℓ5, D3 and D4) are concurrent; and D1, D2, D3 and D4 are generic with all the other lines.

34



Theorem 5.20. The complexi�ed real arrangements M+
M1,ℓ5

and N+
M1,ℓ5

verify the following properties:

(1) The arrangements M+
M1,ℓ5

and N+
M1,ℓ5

are combinatorially equivalent.

(2) There is no homeomorphism of CP2 sending M+
M1,ℓ5

on N+
M1,ℓ5

.

(3) The complements of M+
M1,ℓ5

and N+
M1,ℓ5

are homotopy-equivalent.

Remark 5.21. The homeomorphism type of the arrangements M and N are not distinguished by

a linking invariant, so we cannot conclude here that the one of M(M+
M1,ℓ5

) and of M(N+
M1,ℓ5

) are

di�erent.

6. Combinatorial classes of arrangements with connected moduli spaces

One of the di�culties in the study of Zariski pairs is to construct explicit examples of combinatorics

with a non-connected moduli space so that two arrangements in distinct connected components may

have di�erent topologies, this necessary condition comes from Randell Isotopy Theorem [70]. The

purpose of the following two sections will be to study the number of connected components of a moduli

space using combinatorial tools.

In this section, we explore combinatorial classes of arrangements with a connected moduli space.

The results presented here are in the continuation of the works of: Jiang and Yau [52] where they

present the class of nice arrangements, Wang and Yau [83] where they introduce the class of simple

arrangements, and Nazir and Yoshinaga [61] where they de�ne the classes of inductively connected and

of C3 of simple type arrangements. In particular, we provide a solution to a question of Nazir and

Yoshinaga about the relation between all these classes, see [61, Introduction].

6.1. Type of an arrangement & naive dimension.

Let A = {ℓ1, . . . , ℓn} be an arrangement with order ω. For i ∈ {1, . . . , }, we de�ne Ai the subar-

rangement of A de�ned by Ai = ω−1({1, . . . , i}. It inherits from A a structure of order arrangement.

Consider the following ascending chain of arrangements:

A1 = {ℓ1} ⊊ A2 ⊊ · · · ⊊ Ai ⊊ · · · ⊊ An = A, (AC)

We denote by τi(A, ω) (alternatively, τ(A, ω, ℓi) or τi depending on the context) the cardinality of the

intersection #ℓi ∩ Sing(Ai−1). Note that we also have:

τi =
∑

P∈C(Ai)

(|P | − 2) −
∑

Q∈C(Ai−1)

(|Q| − 2).

De�nition 6.1. The type of an ordered arrangement (A, ω) is the n-tuple de�ned as

τ(A, ω) = (τ1, . . . , τn) ∈ Nn.

The ascending chain (AC) and the type are of combinatorial nature. So they can be de�ned over an

abstract line combinatorics C. By an extension of notation, we will also denote (C)1 ⊊ · · · ⊊ (C)n = C
and τ(C, ω).

Example 6.2. Consider the arrangement A pictured in Figure (10) endowed with the order ω induced

by the indices. Its type is τ(A, ω) = (0, 0, 0, 0, 2, 2, 1, 3).

For two ordered arrangements (A, ω) and (A′, ω′) of n and n′ lines respectively, and such that

A ∩ A′ = ∅ (i.e. without common line, but not necessarily with generic intersection), one can de�ne
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ℓ1

ℓ2

ℓ3ℓ4

ℓ5

ℓ6
ℓ7

ℓ8

Figure 10. An arrangement with type τ(A, ω) = (0, 0, 0, 0, 2, 2, 1, 3).

the operation (A ⊔A′, ω ⊕ ω′) producing an ordered arrangement of n+ n′ lines with order:

ω ⊕ ω′ : A ⊔A′ −→ {1, . . . , n+ n′}

ℓ 7−→

ω(ℓ) if ℓ ∈ A,

n+ ω′(ℓ) if ℓ ∈ A′.

Remark 6.3. If A ∈ Arrn and A′ ∈ Arrn′ have no common lines, for any orders ω and ω′ on A and A′

respectively, one has that for any i ∈ {1, . . . , n} and j ∈ {1, . . . , n′}:

τi(A, ω) = τi(A ⊔A′, ω ⊕ ω′) and τj(A′, ω′) ≤ τn+j(A ⊔A′, ω ⊕ ω′),

Furthermore, for any other order ω on A, and for any j ∈ {1, . . . , n′}, one has that:

τn+j(A ⊔A′, ω ⊕ ω′) = τn+j(A ⊔A′, ω ⊕ ω′).

Proposition 6.4. Let (A, ω) be an ordered arrangement. The following equality holds:

n∑
i=1

(2− τi) = 2|A| −
∑

P∈C(A)

(|P | − 2).

The right-hand side of the equation in the preceding proposition can be seen as a preliminary attempt

to establish a combinatorial formula for the dimension of the realization space R(A), despite its naive

nature. The part 2|A| gives the number of required variables in the construction, while the sum over

P ∈ C(A) corresponds to the restriction imposed by the singular points. Since the action of PGL3(C)
can �x four points in generic position, this induces a reduction of 8 to pass from the dimension of R(A)

to the dimension of M(A).

De�nition 6.5. Let A be a line arrangement. The naive dimension of the moduli space is:

dnaiveM(A) = 2|A| − 8−
∑

P∈C(A)

(|P | − 2).

Remark 6.6. The naive dimension is fully determined by the combinatorics of A, so we can de�ne it

on any abstract line combinatorics. Recall that in general the naive dimension is not equal to the

dimension of the moduli space, by Pappus' hexagon theorem.

From [28, Remark 4.4], we have the following bound for the dimension of the moduli space.

Proposition 6.7. Let A be an arrangement. The following inequality holds:

dnaiveM(A) ≤ dimCM(A).
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6.2. Inductively connected arrangement.

The results of this section are reformulation and re�nement of those of Nazir and Yoshinaga [61].

First, using the notion of the type of an arrangement, we can reformulate the de�nition of inductively

connected arrangement.

De�nition 6.8. An arrangement A is inductively connected if there exists an order ω on A such that

max(τ(A, ω)) ≤ 2.

Example 6.9. The arrangement A pictured in Figure (11) endowed with the order ω induced by the

indices has type τ(A, ω) = (0, 0, 0, 0, 2, 2, 1). So, it is inductively connected.

ℓ1

ℓ2

ℓ3ℓ4

ℓ5

ℓ6
ℓ7

Figure 11. An inductively connected arrangement with type τ(A, ω) = (0, 0, 0, 0, 2, 2, 1).

In the following, we will consider two particular families of line arrangements. Let n be a positive

natural number. We de�ne:

• the family of arrangements formed by a pencil of n lines, denoted by X(n) ⊂ Arrn,

• the family of arrangements formed by a pencil of n− 1 lines and a unique generic line, denoted

by X(n) ⊂ Arrn.

X(4) X(4)

Figure 12. Example of arrangements in the X(4) and X(4).

Proposition 6.10. If A is an inductively connected arrangement such that A /∈ X(n) ∪ X(n), then

M(A) is isomorphic to a Zariski open subset of a complex space of dimension dnaiveM(A). As a

consequence, the moduli space M(A) is connected.

In a larger context, an explicit parametrization of M(A) as an open Zariski subset of an a�ne

complex space is provided in Theorem 7.4.
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Corollary 6.11. If A ∈ Arrn is an inductively connected arrangement such that A /∈ X(n) ∪ X(n),

then

dimCM(A) =
n∑

i=5

(2− τi) = dnaiveM(A).

Remark 6.12. In the same spirit as [61, Lemma 3.2], let (A, ω) and (A′, ω′) be two ordered arrangements

such that τi(A ⊔ A′, ω ⊕ ω′) ≤ 2 for all i ∈ {|A| + 1, . . . , |A| + |A′|}. If M(A) is irreducible, then

M(A ⊔A′) is irreducible thus connected and it has dimension

dimCM(A ⊔A′) = dimCM(A) +

|A|+|A′|∑
i=|A|+1

(
2− τi(A ⊔A′, ω ⊕ ω′)

)
.

Note that the reciprocal is not true in general, as it is shown in the following example.

Example 6.13. In Section 4.5, we present a line combinatorics C of 13 lines with a moduli space

with two irreducible components of dimension 1. These components are geometrically characterized,

e.g. there are particular multiple points P1, P2, and P3 which are collinear in the �rst component, but

they are not in the second one (see Proposition 4.27). Consider the combinatorics C′ constructed on

C by the addition of a line ℓ14 passing through P1 and P2 but avoiding P3. By construction, one has

that τ14(C′) = 2 and M(C′) is irreducible.

6.3. Nice, simple and generalized simple arrangements.

In [52], the Jiang and Yau de�ne the combinatorial class of nice arrangements, which is generalized

in [83] as the class of generalized simple arrangements. In the introduction of [61], Nazir and Yoshinaga

ask about the relation between these two combinatorial classes and the class of inductively connected

arrangements. The purpose of this section is to prove that any generalized simple arrangement is

actually inductively connected. First, let us recall the de�nition of generalized simple arrangements.

For any arrangement A, we de�ne G(A) as the graph whose vertices vP are in one-to-one correspon-

dence with the multiple points P of A, i.e. the singular points whose multiplicity is at least 3; two

vertices vP and vQ are joined by an edge if and only if the two corresponding points P and Q lie on

the same line of A. Associated with this graph, one may de�ne the following notions:

• A star centered in vP , and denoted St(vP ), is the subgraph of G(A) generated by vP and any

neighbor vertex of vP . The open star
◦
St(vP ) is the complex composed of vP and any adjacent

edge (without the neighbor vertices of vP ).

• A reduced circle of G(A) is a tuple of (v1, . . . , vk) of vertices of G(A), such that for all i ∈
{1, . . . , k}, one has that (vi, vi+1) is an edge of G(A) and vi−1 ̸= vi+1 (here the indices are

considered modulo k).

• A generalized free net based on a tuple (B0, . . . , Bm) of reduced circles of G(A) (where B0 can

also be a single vertex), is the maximal subgraph Net(B0, . . . , Bm) of G(A) whose vertices are

at a distance of at most 1 from at least one of the circles Bi, and such that

(N1) for all i ∈ {0, . . . ,m}, two vertices v and w of Bi are connected by an edge if and only if

they are adjacent in Bi,

(N2) for all i, j ∈ {0, . . . ,m−2} and two vertices v ∈ Bi and w ∈ Bj , there does not exist z ∈ Bk

with k > max(i, j) which veri�es that (v, z) and (w, z) are both edges in Net(B0, . . . , Bm),

(N3) for all pair of vertices v, w ∈ Net(B0, . . . , Bm), there does not exist z ∈ G(A)\Net(B0, . . . , Bm)

which veri�es that (v, z) and (w, z) are both edges in G(A),

(N4) for all i ∈ {1, . . . , n}, there exists a vertex v ∈ Bi which is not connected by an edge to

any reduced circle Bj with j < i.
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The open net
◦

Net(B0, . . . , Bm) is the complex formed by the vertices of the Bi and all the

edges of Net(B0, . . . , Bm), i.e. all the end vertices of the net are removed.

De�nition 6.14. An arrangement A is generalized simple if there are stars St(v1), . . . ,St(vk) and

generalized free nets Net1, . . . ,Netl which are pairwise disjoint in G(A) and such that the graph

G(A) \
{

◦
St(v1), . . . ,

◦
St(vk),

◦
Net1, . . . ,

◦
Netl

}
is a forest. When l = 0, the arrangement A is nice, and it is simple when for all nets have m = 2.

Theorem 6.15. If A is a generalized simple arrangement, then A is inductively connected.

Idea of the proof. Using the combinatorial characterization of the generalized simple arrangements, we

construct an explicit order such that each τi is lesser than 2. The highest lines correspond to those in

the forest, then come the one in the stars, and the smallest correspond to the edges in the nets. □

6.4. Inductively rigid arrangements.

Following an antagonist approach to the case of inductively connected arrangements, we introduce

another combinatorial class of arrangements with connected moduli space.

De�nition 6.16. An arrangement A ∈ Arrn is inductively rigid if there exists an order ω such that

for any arrangement Ai in the ascending chain (AC), we have M(Ai) = {Ai}.

Note that if an arrangement A is inductively rigid, then any Ai in the induced ordered chain (AC)

is also inductively rigid. As a consequence, any arrangement A with |A| ≤ 3 is inductively rigid. In

addition, no arrangement in the classes X(n) and X(n+ 1) is inductively rigid for n ≥ 4.

Proposition 6.17. An arrangement A ∈ Arrn is inductively rigid if and only if either n ≤ 4 and

A /∈ X(4), or n ≥ 5 and there exists an order ω on A such that:

(IR1) A4 is generic, i.e. for all i ∈ {1, 2, 3, 4}, we have that τi(A, ω) = 0,

(IR2) for all i ∈ {5, . . . , n}, we have that τi(A, ω) ≥ 2.

As an important consequence of the previous proposition, we have that the class of inductively rigid

arrangements is combinatorial.

Example 6.18. Consider the arrangement B given in Figure (13), with order ω induced by the line

numbering. It is inductively rigid since its type is τ(B, ω) = (0, 0, 0, 0, 2, 2, 2, 2, 2, 3). However, it is not

inductively connected since all the lines contain at least 3 multiple points. Furthermore, it is not C3,

so it is neither C3 of simple type (see Section 6.5 for the de�nitions).

6.5. Arrangements with a rigid pencil form.

An arrangement A is Ck if k is the minimal integer such that there exists a subarrangement Dk ⊂ A
of k lines such that Sing≥3(A) is contained in Dk. Nazir and Yoshinaga proved that if an arrangement

is C0, C1 or C2 then it is inductively connected, and so that its moduli space is connected, see [61,

Theorem. 3.11]. They also introduced the combinatorial class C3 of simple18 type.

De�nition 6.19. An arrangement A of class C3 is of simple type if one of the following conditions

holds:

(i) the three lines of D3 are in generic position, and one of them contains a unique multiple point,

(ii) the three lines of D3 are concurrent.

18The term simple used here is not related to the one of Section 6.3.
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ℓ1

ℓ2

ℓ3ℓ4

ℓ5

∞

ℓ6

ℓ7

ℓ8

ℓ9
ℓ10

Figure 13. An inductively rigid arrangement which is neither inductively connected,

nor C3 of simple type.

Theorem 6.20 ([61, Theorem. 3.15]). If A is a C3 arrangement of simple type, then its moduli space

M(A) is connected.

We can generalize this class of arrangements, thereby freeing them from the constraint of being C3.

De�nition 6.21. An arrangement A has a rigid pencil form if it contains an inductively rigid subar-

rangement A′ with a singular point P0, such that for any multiple point P ∈ Sing≥3(A), one of the

following holds:

(1) P is a singular point of A′,

(2) the line (P, P0) is in A′.

Proposition 6.22. Any C3 arrangement of simple type has a rigid pencil form.

Theorem 6.23. If A has a rigid pencil form, then its moduli space M(A) is connected.

Idea of the proof. If A has a rigid pencil form then all its singular points are contained in a �xed pencil

or are in A′. This allows to express the moduli space as an open Zariski subset of the kernel of an a�ne

application with complex coe�cients, as done in [61, Theorem 3.15]. As a consequence, the moduli

space is irreducible and so connected. □

Example 6.24. Consider the arrangement A ∈ Arr10 pictured in Figure (14) and de�ned by the

equations:

ℓ1 : x = 0, ℓ2 : x− z = 0, ℓ3 : y = 0, ℓ4 : y − z = 0,

ℓ5 : z = 0, ℓ6 : −x+ y = 0, ℓ7 : x+ y − z = 0, ℓ8 : −2x+ 4y − z = 0,

ℓ9 : 2x− 3y + z = 0, ℓ10 : −4x+ 6y = 0.

Its combinatorics is given by:
{ℓ1, ℓ2, ℓ5} , {ℓ1, ℓ3, ℓ6, ℓ10} , {ℓ1, ℓ4, ℓ7} , {ℓ1, ℓ8} , {ℓ1, ℓ9} , {ℓ2, ℓ3, ℓ7}
{ℓ2, ℓ4, ℓ6, ℓ9} , {ℓ2, ℓ8} , {ℓ2, ℓ10} , {ℓ3, ℓ4, ℓ5} , {ℓ3, ℓ8, ℓ9} , {ℓ4, ℓ8, ℓ10}
{ℓ5, ℓ6} , {ℓ5, ℓ7} , {ℓ5, ℓ8} , {ℓ5, ℓ9, ℓ10} , {ℓ6, ℓ7, ℓ8} , {ℓ7, ℓ9} , {ℓ7, ℓ10}

 .

Let A′ = {ℓ1, · · · ℓ7} be the subarrangement of A with combinatorics:

{{ℓ1, ℓ2, ℓ5} , {ℓ1, ℓ3, ℓ6} , {ℓ1, ℓ4, ℓ7} , {ℓ2, ℓ3, ℓ7} , {ℓ2, ℓ4, ℓ6} , {ℓ3, ℓ4, ℓ5} , {ℓ5, ℓ6} , {ℓ5, ℓ7} , {ℓ6, ℓ7}} .

Once again, if we consider the order ω induced by the indices, we have τ(A′, ω) = (0, 0, 0, 0, 2, 2, 2) and

thus A′ is an inductively rigid arrangement. Furthermore, all multiple points of A are contained in
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the three concurrent lines ℓ3, ℓ4 and ℓ5, except for the point {ℓ6, ℓ7, ℓ8} which contains the two lines ℓ6

and ℓ7 of A′. Thus, A has a rigid pencil form. By Theorem 6.23, we deduce that M(A) is connected.

It is worth noticing that all multiple points of A are also contained in the 4-pencil {ℓ1, ℓ3, ℓ6, ℓ10}
or {ℓ2, ℓ4, ℓ6, ℓ9}. This implies that A is a C4 arrangement. Nevertheless, any of these two 4-pencils is

contained in an inductively rigid subarrangement of A. So A does not admit a rigid pencil form.

ℓ3

ℓ4

ℓ2ℓ1

ℓ5

∞

ℓ7

ℓ6

ℓ9

ℓ10

ℓ8

Figure 14. An arrangement with rigid pencil form.

Remark 6.25. The statement of Theorem 6.23 still holds if the subarrangementA′ veri�es thatM(A′) =

{A′} instead of being inductively rigid. Nevertheless, one should notice that this is a geometric but

not combinatorial condition.

7. On the number of connected components of M(A)

We know since MacLane [56] that the moduli space of a line arrangement can be non-connected,

nevertheless, the behavior of the number of connected components has never been studied. The

objective of this section is to introduce a strategy to inductively build an upper bound on the number

of connected components of M(A). The foundation of this method is the class of inductively connected

arrangements introduced by Nazir and Yoshinaga [61], see also De�nition 6.8.

7.1. Perturbations of a combinatorics.

Let A be an arrangement and P be a multiple point of Z(A). Assume that ℓ ∈ A passes through

P , a small perturbation of ℓ near P modi�es the combinatorics of A and transforms P into a singular

point P̃ of multiplicity m(P ) − 1. The following de�nition mimics this geometric perturbation at a

combinatorial level.

De�nition 7.1. Let C = (L,P) be an abstract line combinatorics. Let P0 ∈ P be a �xed multiple

point of C and let ℓ ∈ P0. An elementary perturbation of C at (ℓ, P0) is an abstract combinatorics

C̃ = (L, P̃) such that:

(1) for all P ∈ P, P ̸= P0, one has P ∈ P̃,
(2) P̃0 = P0 \ {ℓ} is in P̃.

Such a relation is denoted C̃ ≺ C. For any multiple point P ∈ P, we call the parent of P in C̃ the

unique element P̃ ∈ P̃ such that either P̃ = P or P̃ = P̃0.
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Example 7.2. Let C = {{ℓ1, ℓ2, ℓ3, ℓ4}, {ℓ1, ℓ5}, {ℓ2, ℓ5}, {ℓ3, ℓ5}, {ℓ4, ℓ5}} be the combinatorics of an

arrangement in X(5). The elementary perturbation of C at (P0, ℓ4), for P0 = {ℓ1, ℓ2, ℓ3, ℓ4}, is:

{{ℓ1, ℓ2, ℓ3}, {ℓ1, ℓ4}, {ℓ1, ℓ5}, {ℓ2, ℓ4}, {ℓ2, ℓ5}, {ℓ3, ℓ5}, {ℓ4, ℓ5}, {ℓ4, ℓ5}},

and the parent of P0 = {ℓ1, ℓ2, ℓ3, ℓ4} is {ℓ1, ℓ2, ℓ3}.

De�nition 7.3. A m-perturbation of C = (L,P) is a sequence of m elementary perturbations such

that

C0 ≺ C1 ≺ · · · ≺ Cm = C,

and C0 is inductively connected with associated order ω0. Since C0 and C have the same set of lines,

then ω0 is also an order on C, and it will be called the perturbation order. For any multiple point P in

Pi, there is a unique chain of parents coming from each elementary perturbation:

P̃ = P0 ⊂ P1 ⊂ · · · ⊂ Pi = P.

The point P̃ in C0 is called the ancestor of P .

For brevity's sake, an m-perturbation C0 ≺ C1 ≺ · · · ≺ Cm = C will be denoted by C0 ≺≺ C. Since the
generic combinatorics is inductively connected, and since it can be obtained from any C by a sequence

of elementary perturbations, then any combinatorics C admits a m-perturbation for some m.

7.2. Parametrization of the moduli space.

The purpose of this section is to give a constructible proof of the following result.

Theorem 7.4. Let A ∈ Arrn be an arrangement, with A /∈ X(n)∪X(n), which admits a m-perturbation

C0 ≺≺ C(A), and denote d0 = dnaiveM(C0). There exists an open Zariski subset W0 of the a�ne space

of dimension d0 and m polynomials ∆1, . . . ,∆m such that

M(A) ≃ {(v1, . . . , vd0) ∈W0 | ∆1 = · · · = ∆m = 0} .

Remark that we may have that some of the ∆i's are always trivial. It is, for example, the case in

Pappus arrangement. From the previous result, we can deduce the following corollary. The left-hand

inequality corresponds to the one of Proposition 6.7.

Corollary 7.5. Let A ∈ Arrn be a line arrangement, with A /∈ X(n) ∪ X(n). If C(A) admits a

m-perturbation, then

0 ≤ dimCM(A)− dnaiveM(A) ≤ m.

The strategy of the proof of Theorem 7.4 is the following. The goal is to express the moduli space

M(A) from the following data:

• An open Zariski subset W0 of an a�ne linear space, codifying the open conditions.

• A map Ψ over W0 which parametrizes the arrangements in Arrn verifying the Zariski-closed

conditions of M(C0), e.g those of type ∆i,j,k = 0 with {ℓi, ℓj , ℓk} ⊂ P̃ for a multiple point P̃ in

C0.
• A list ∆1, . . . ,∆m of m polynomials, i.e. the remaining Zariski-closed conditions coming from

multiple points P in C(A) which are not in C0, where each polynomial represents a step of the

m-perturbation C0 ≺≺ C.

We start with the construction of an expression of the map Ψ, then we give the polynomials∆1, . . . ,∆m

and �nally the existence of W0 is discussed.
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Remark 7.6. Let P = {ℓi1 , . . . , ℓim} be a multiple point in C(A). One can reduce the set of Zariski-

closed conditions {∆i,j,k = 0 | {ℓi, ℓj , ℓk} ⊂ P} to its subset {∆i1,i2,ik = 0 | k = 3, . . . ,m}.

Let v = (v1, . . . , vd0) be a system of coordinates in V0 = Cd0 . For each line ℓi, we associate three

polynomials ai, bi, ci ∈ C[v1, . . . , vd0 ] such that

ℓi : ai(v)x+ bi(v)y + ci(v)z = 0.

In this way, one can de�ne a map called parametrization of M(A):

Ψ : v ∈W0 7−→


 a1(v)

b1(v)

c1(v)

 , . . . ,

 an(v)

bn(v)

cn(v)


 ∈ (C3)n.

In addition to Ψ, one can construct another map Φ that parametrize the singular points of the elements

in M(A) as follows. Let P be a multiple point in the combinatorics C(A), and let P̃ be the ancestor of

P in C0. Take ℓi and ℓj the two lines in P̃ which are minimal with respect to the order ω0. We de�ne

ΦP = (bicj − bjci, ajci − aicj , aibj − ajbi) ∈ C[v1, . . . , vd0 ]
3,

If an arrangement A0 ∈ M(A) is given by Ψ(v) then for any multiple point P of C(A), the vector

ΦP (v) ∈ C3 express the homogeneous coordinates of P in CP2.

Let us describe in detail how the polynomials ai, bi and ci are inductively constructed. Since

A /∈ X(n) ∪ X(n), one can assume that the perturbation order ω0 is such that the lines ℓ1, ℓ2, ℓ3 and

ℓ4 are in generic position in both C0 and C(A). Using the action of PGL3(C), we �x them as x = 0,

x− z = 0, y = 0 and y − z = 0, respectively. In other words, for all v ∈ V0, we de�ne

Ψ(v)1 = (1, 0, 0), Ψ(v)2 = (1, 0,−1), Ψ(v)3 = (0, 1, 0), Ψ(v)4 = (0, 1,−1).

It follows from its de�nition that the parametrization Φ of the singular points of these four lines are

given for any v ∈ V0 by:

Φ⟨ℓ1,ℓ2⟩(v) = (0, 1, 0), Φ⟨ℓ1,ℓ3⟩(v) = (0, 0, 1), Φ⟨ℓ1,ℓ4⟩(v) = (0, 1, 1),

Φ⟨ℓ2,ℓ3⟩(v) = (1, 0, 1), Φ⟨ℓ2,ℓ4⟩(v) = (1, 1, 1), Φ⟨ℓ3,ℓ4⟩(v) = (1, 0, 0).

where ⟨ℓi1 , . . . , ℓik⟩ with k ≥ 2 is the unique point P in C(A) verifying that {ℓi1 , . . . , ℓik} ⊂ P , if it

exists.

The induction process goes as follows. Assume that the maps Ψ and Φ parametrize Ai−1 in the

chain (AC) with respect to the perturbation order ω0. Note that the number of parameters used in this

parametrization is di =
∑i−1

j=5

(
2− τj(C0, ω0)). The next step is then to extend these parametrization

maps to Ai. They are determined by the values τi(C0, ω0):

• If τi(C0, ω0) = 0, i.e. the line ℓi is generic in (C0)i. Since ℓi ̸∈ ⟨ℓ1, ℓ2⟩ or ℓi ̸∈ ⟨ℓ1, ℓ3⟩ in C(A),

we can parametrize ℓi using only two complex parameters vdi and vdi+1,

Ψ(v)i =

(vdi , 1, vdi+1) if ℓi ̸∈ ⟨ℓ1, ℓ2⟩,

(1, vdi , vdi+1) if ℓi ̸∈ ⟨ℓ1, ℓ3⟩.

• If τi(C0, ω0) = 1, i.e. the line ℓi passes through a unique multiple point P0 in (C0)i. Take ℓj

and ℓk the two lines in P0 which are minimal with respect to the order ω0. One de�nes:

Ψ(v)i = Ψ(v)j + vdi ·Ψ(v)k.
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• If τi(C0, ω0) = 2, i.e. the line ℓi passes through two multiple points P0 and Q0 in (C0)i. The

line ℓi is then parametrized by

Ψ(v)i = Φ⟨P0⟩(v)× Φ⟨Q0⟩(v),

where �×� stands for the usual cross product.

The next step is to construct the polynomials ∆1, . . . ,∆m. Assume that the ith elementary per-

turbation Ci−1 ≺ Ci in C0 ≺≺ C is at (ℓj , P ) and let P̃ be the parent of P in Ci−1. Take two distinct

elements ℓi1 , ℓi2 ∈ P̃ and de�ne:

∆i(v) = det (Ψ(v)j ,Ψ(v)i1 ,Ψ(v)i2) ∈ C[v1, . . . , vd0 ]. (D)

It is worth noticing that another choice of ℓi1 , ℓi2 ∈ P̃ will lead to an equivalent construction of M(A),

due to Remark 7.6.

The Zariski open subset W0 can be expressed similarly as

W0 = {v ∈ Cd0 | det (Ψ(v)i,Ψ(v)j ,Ψ(v)k) ̸= 0, if ̸ ∃P in C(A) such that {ℓi, ℓj , ℓk} ⊂ P}.

By hypothesis A ̸∈ X(n) ∪ X(n), so the above polynomial inequalities imply that ℓi ̸= ℓj , for any

i ̸= j ∈ {1, . . . , n}.

7.3. Inductive upper bound.

Using the description of the moduli space obtained in Theorem 7.4, we construct an upper bound

of the number of irreducible components of the moduli space. Since #CC(M(A)) ≤ #Irr(M(A)),

e.g. [74, Sec. 7.2], this will also provide an upper-bound on the number of connected components.

When A is in X(n) or X(n), we know that its moduli space M(A) is irreducible and so connected.

Among this section, we assume that A ̸∈ X(n) ∪ X(n).

Let A = {ℓ1, . . . , ℓn} be an arrangement with a m-perturbation C0 ≺≺ C(A) = (A,P) and pertur-

bation order ω0. Up to relabelling, we assume that ω0(ℓi) = i, i.e. ω0 is the order induced by the

indices. Furthermore, we can also assume that ℓ1, ℓ2, ℓ3 and ℓ4 are in generic position in C(A). We

de�ne recursively two applications Λ : A → N and Θ : P → N as follows.

(R1) For i ∈ {1, 2, 3, 4}, we �x Λ(ℓi) = 0.

(R2) For any P ∈ C(A4), we �x Θ(⟨P ⟩) = 0.

(R3) For i ∈ {5, . . . , n}, following the ideas of the proof in Section 7.2, the expression of Λ(ℓi)

depends on the value τi(C0, ω0).

• If τi(C0, ω0) = 0, we �x

Λ(ℓi) = 1.

• If τi(C0, ω0) = 1, i.e. the line ℓi passes through a unique singular point P0 in (C0)i, we
de�ne:

Λ(ℓi) =

{
1 + Λ(ℓj) if Λ(ℓj) = Λ(ℓk),

max(Λ(ℓj),Λ(ℓk)) otherwise.

where ℓj and ℓk are two lines in the parent of P0.

• If τi(C0, ω0) = 2, i.e. the line ℓi passes through two singular points P0 and Q0 in (C0)i, we
de�ne

Λ(ℓi) = Θ(⟨P0⟩) + Θ(⟨Q0⟩).

(R4) For i ∈ {5, . . . , n} and for any double point P = {ℓi, ℓj} in (C0)i, we de�ne

Θ(⟨P ⟩) = Λ(ℓi) + Λ(ℓj).
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Theorem 7.7. Let A be a line arrangement and assume that C(A) admits a m-perturbation C0 ≺≺
C(A). The following inequality holds:

#CC(M(A)) ≤
m∏
i=1

(
Λ(ℓj) + Λ(ℓi1) + Λ(ℓi2)

)
.

where Ci−1 ≺ Ci is the elementary perturbation at (ℓj , P ), and ℓj1, ℓj2 are two lines contained in the

parent of P in Ci−1.

Proof. In Theorem 7.4, we obtain a description of M(A) as the intersection of at most m proper

algebraic hypersurfaces Vi : ∆i = 0, de�ned in Equation (D). By [40, Ex. 8.3.6], this implies that

#Irr(M(A)) ≤
∏m

i=1 deg∆i.

Furthermore, the description of Λ and Θ given above ensures that:

deg∆i ≤ Λ(ℓj) + Λ(ℓi1) + Λ(ℓi2). □

7.4. Sharpness of the upper bound.

By construction, the inequality in Theorem 7.7 becomes an equality for any inductively connected or

inductively rigid arrangement. So, the question is: "is this inequality still sharp in non-trivial cases?".

Let p be a prime number such that p ≥ N . Fix a primitive p-root of unity ζ. Consider the

arrangement Ap = {ℓ1, . . . , ℓ2p+2} with lines:

ℓ1 : x− y = 0, ℓ2 : x− ζy = 0, ℓ2i+1 : x+ ζiz = 0 and ℓ2i+2 : ζ
−iy + z = 0,

for i ∈ {1, . . . , p}. The multiple points of Ap are the two points of multiplicity p:

{ℓ3, ℓ5, . . . , ℓ2p+1} and {ℓ4, ℓ6, . . . , ℓ2p+2},

and the 2p triple points given by:

{ℓ1, ℓ2i+1, ℓ2i+2} and {ℓ2, ℓ2i+2, ℓ[2i]+3}

for i ∈ {1, . . . , p}, where [a] is the value of a modulo 2p such that 0 ≤ [a] < 2p.

Remark 7.8. The arrangement A2 corresponds to the Ceva arrangement, while the arrangements A3

are the MacLane arrangements [56]. This family of arrangements appears in [18] in the context of

Zariski pairs as subarrangements of the re�ection arrangements associated with G(N,N, 3).

Consider the elementary perturbation C̃(Ap) on C(Ap) at (ℓ2p+2, {ℓ2, ℓ3, ℓ2p+2}). Let ω0 be the

following order on C̃(Ap):

(ℓ1, . . . , ℓ2p+2) 7−→ (5, 6, 1, 2, 3, 4, 7, 8, . . . , (2p+ 2)).

We have that τ(C̃(Ap), ω0) = (0, 0, 0, 0, 2, 1, 2, 2 . . . , 2, 2). So C̃(Ap) is inductively connected, and thus

it is a 1-perturbation of C(Ap). Using the rules (R1)-(R2)-(R3)-(R4), we can compute that:

Λp : (ℓ1, . . . , ℓ2p+2) 7−→ (0, 1, 0, 0, 0, 0, 1, 1, 2, 2, . . . , p− 2, p− 2).

By Theorem 7.7, we obtain thatM(Ap) has at most Λp(ℓ2)+Λp(ℓ3)+Λp(ℓ2p+2) = 1+0+(p−2) = p−1

connected components. On the other hand, the computation of the moduli space using Theorem 7.4

shows that the dimension is zero. Furthermore, it contains Ap for any choice of primitive p-root of

unity ζ. It follows that #CC(M(Ap)) ≥ p− 1. We can thus state the following theorem.
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Theorem 7.9. For any N ∈ N≥2, there exists an arrangement A such that #CC(M(A)) ≥ N , and

#CC(M(A)) =
m∏
i=1

(
Λ(ℓj) + Λ(ℓi1) + Λ(ℓi2)

)
,

with the notation of Theorem 7.7.

8. Perspectives for future research

In this section, we discuss topics and problems that will be studied in the future. We have answered

some old questions by Falk and Randell [36], or Suciu [78], or Nazir and Yoshinaga [61], but new ones

emerged from our works. Let us take a look at some of them and see what they are all about.

8.1. Topology of line arrangements.

In their survey papers, Falk and Randell [35, 36] addressed numerous interesting questions about the

homotopy of hyperplane arrangements. Here are some questions that arise from, or that are related

to, our work.

8.1.1. Homotopy vs Fundamental group.

In [43], we prove the existence and exhibit π1-equivalent and homotopy-equivalent Zariski pairs.

Nevertheless, we do not know if the π1-equivalent Zariski pairs are also homotopy-equivalent. So, the

following question naturally appears.

Question 8.1. If two combinatorially-equivalent arrangements are π1-equivalent, then are they neces-

sarily homotopy-equivalent?

In the previous question, is the answer the same when we drop the combinatorially-equivalent

hypothesis? To solve this question will be a natural pursuit of this former result and will answer an

old question of Falk [32] questioning the homotopy type of generic sections of the parallel connection

of two arrangements.

8.1.2. Topology vs Complement.

In the literature, the de�nition of the topology of an arrangement di�ers from one article to another.

Sometimes it is the homeomorphism type of the pair (CP2,Z(A)) (as we choose in this manuscript),

at other times it is the homeomorphism type of the complement M(A).

Question 8.2. Is the homeomorphism type of (CP2,Z(A)) determined by the one of M(A)?

To positively answer to this question, we should reconstruct the pair (CP2,Z(A)) from the comple-

ment. Such an attempt could lead either to an obstruction in the construction and then to a di�erence,

then it would be interesting to construct an explicit example where these two notions di�er, or we will

succeed in reconstructing the pair (CP2,Z(A)) and then we will obtain an equivalence between these

de�nitions. It is worth noticing that this equivalence is not true for algebraic plane curves in general,

see [9].

8.1.3. Arrangements of 10 lines.

In [86], Ye proves the classi�cation of the moduli space of 9 lines arrangements suggested by Nazir

and Yoshinaga in [61]. A consequence of this classi�cation is the combinatorial determination of the

topology for any arrangement with at most 9 lines. On the opposite, Artal, Carmona, Cogolludo

and Marco gave an example of a Zariski pair with 11 lines, see also [45] for another example with

non-isomorphic fundamental groups.

Problem 8.3. Classify the topology of 10 line arrangements.
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A detailed list of potential Zariski pairs of 10 lines is known [2, 1, 22]. Among this list, I would

suggest focusing on complexi�ed real arrangements with a trivial group of automorphism, so that any

invariant of the ordered and oriented topology becomes a topological invariant. Then, an invariant

based on the braid monodromy and adapted to these speci�c cases, in the spirit of [7], could allow

us to distinguish their topologies. Furthermore, the increasing computation capacity of the modern

computer could help us to solve this long-standing question.

8.1.4. Characteristic varieties.

The characteristic varieties of a line arrangement are de�ned as the jumping loci of the homology

with local coe�cients of the complement. More precisely, the ith characteristic variety is:

Vi(A) = {ξ ∈ (C∗)n | dimCH1(M(A);Cξ) ≥ i}.

The description of their structure started with the work of Arapura [3] where he proved that the

irreducible components of Vi(A) are subtori translated by torsion elements19.

Question 8.4. Are the characteristic varieties Vi(A) determined by the combinatorics of A?

By the work of Artal [6], see also [55], we know that the depth20 of a character ξ depends on the value

of the I-invariant of the inner-cyclic triples of the form (A, ξ, γ). Unpublished computations show that

the depth of a character ξ in a unique triangular inner-cyclic triple is determined by the combinatorics.

It could be interesting to pursue this investigation of the relation between the characteristic varieties

and the I-invariant.

8.2. Linking invariants.

The linking invariants are recent invariants in the study of the topology of line arrangements. The

�rst de�nition of the I-invariant appeared in 2013. Nevertheless, during this last decade, they proved

many times their e�ciency [41, 48, 18, 45, 44]. So they deserve a more in-depth investigation.

8.2.1. Re�nement of the loop-linking numbers.

Currently, Rodau, a Ph.D. student of Artal and Florens, is constructing a �ner version of the

loop-linking number. During a private discussion, he explained the construction, and we succeeded

in detecting new examples of Zariski pairs. This shows that this invariant is getting closer to the

optimal version of a linking invariant. So all the work made in [45] has to be generalized for this new

invariant. We could also question its behavior in the case of complexi�ed real arrangements. Is there a

diagrammatic version of this invariant in the spirit of the chamber weight for the I-invariant as in [48]?

8.2.2. Triviality of the linking invariants with integral coe�cients.

The behavior of the linking invariants is not well understood. If we succeeded in solving Question 2.7,

there are still open problems about them. In particular, I formulated the following conjecture in [45].

Conjecture 8.5. The free part of the linking invariants is determined by the combinatorics.

According to our �rst computations, this conjecture looks to still hold for the Artal and Rodau

linking invariant. Until now, there are no mathematical arguments (even partial) that could explain this

particular behavior. Understanding it could bring some light to other questions like the combinatorial

nature of the characteristic varieties or the study of the branched coverings of the complex projective

plane.

19A gap in the proof has been corrected in [10]
20The depth of a character ξ ∈ (C∗)n is the maximal value of i such that ξ ∈ Vi(A),

47



8.2.3. Generalizations of the linking invariants.

As previously mentioned, the loop-linking numbers are e�cient topological invariants for line ar-

rangements. As mentioned in the introduction, line arrangements are at the intersection of hyperplane

arrangements and algebraic plane curves or more generally divisors in the projective surface, e.g. ra-

tional surfaces. So it could be useful to generalize the linking invariants in these two natural directions.

A generalization to hyperplane arrangements will imply an adaptation of the construction in higher

dimensions. This will allow us to better understand the topology of these objects. In particular,

by combining this construction with the notion of parallel connection, we could prove that the dif-

feomorphism type of the complement of a hyperplane arrangement does not determine its embedded

topology.

In the other direction, a generalization to divisors in rational surfaces will require a more careful

study of the singularities of the divisor and of the projective space. This will bring a new point of view

and a new tool in the study of curves in weighted projective spaces.

8.2.4. Connection with other invariants.

Until now, the I-invariant is only related to the characteristic varieties. Nevertheless, some behaviors

tend to suggest the existence of connections with other invariants. The linking invariants take values in

an Abelian module with torsion. The order of the torsion θ is determined by the combinatorics of the

arrangements. First, it would be useful to have an e�cient way to compute it. Among the examples

studied, the value of θ seems to be related to the structure of the moduli space. In the Appendix of [45],

lots of Zariski pairs whose moduli space is parametrized by the primitive 5th roots of unity, have been

distinguished using a linking invariant for which θ = 5. Moreover, it appears that all the arrangements

with 11 lines that share these two properties are distinguished by the linking-invariant [45, Section 6].

The example, which proves that the invariant of Rodau and Artal is �ner than the loop-linking number,

also share them. A similar phenomenon also exists between θ and the Alexander invariant isomorphism

test developed by Artal, Carmona, Cogolludo and Marco in [8], see [11, 45, 44] for illustrations of this

phenomenon.

8.3. Moduli space & combinatorial structures.

To understand moduli spaces of line arrangements is a hard question. Nevertheless, due to the

Randell lattice-isotopy theorem, they play a central role in the study of the topology and the geometry

of line arrangements.

8.3.1. Pathological examples.

Recently, Core and Luber produced the �rst explicit example of a moduli space of line arrangement

with singularities [22]. The geometry of arrangements in a continuous family passing through such a

singular point has to be investigated. Are there some geometric characterizations of each irreducible

component that appear at the same time for the arrangement at the singularity? In a similar direction,

constructing other explicit examples of pathological moduli space could be interesting.

Problem 8.6. Construct an explicit example of a moduli space of line arrangement with a singularity

of the type {xy = xz = 0}, or which is not of pure dimension.

Having a better understanding of such pathological cases could help, for example, to construct a

counter-example to Terao's conjecture [67].

8.3.2. Combinatorial structure.

In [44], a combinatorial structure named the splitting-polygon, suggesting a non-connected moduli

space is given. It allows the construction of numerous examples of Zariski pairs of a new type: the Galois
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group of their de�nition �eld is isomorphic to the Klein group. In a work-in-progress, a similar technique

is used to construct non-arithmetic pairs, some of them being de�ned over the rational numbers. This

splitting-polygon only enables splitting into 2 parts of the moduli space, so successive applications of

this structure can only induce a moduli space with 2k connected components. A generalization of this

structure which induces a splitting in more than 2 components would be welcome. The work made

in [49] would be a good starting point.

8.3.3. κm arrangements.

Following the construction made in Section 7.1, one can de�ne complexity classes κm on the set of

arrangements as follows. An arrangement A is κm, if m is the minimal integer such that C(A) admits

a m-perturbation. For example, the class κ0 corresponds to the inductively connected arrangements.

At �rst, we could investigate the class of κ1 arrangements. It contains lots of the known examples

of Zariski pairs, and it is connected to the notion of splitting-polygons [44]. When in addition their

naive dimension is null, then their moduli spaces are either connected or 0-dimensional. The question

is then to know if there exists a combinatorial method to determine in which case the arrangement is.

For some speci�c arrangement, the combinatorial class of arrangements with a rigid pencil form [49]

gives an answer, like in Example 6.24. Nevertheless, it doesn't work in general.

Let Cm(n) be the maximal number of connected components in the moduli space of a κm arrangement

of n lines. The example given in Section 7.4 is κ1 and the number of connected components of its

moduli space grows linearly in n = |A|. There are combinatorial reasons to think that we could have

a growth in 3n for κ1 arrangements, but could it grow faster?

Problem 8.7. For a �x m ∈ N, determine the behavior of Cm(n) when n growths.
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